status: withdrawn (2006-09-13)
keywords: R6RS process, Numbers
Scheme's arithmetic system was designed to allow a wide variety of implementations. After many years of implementation experience, however, most implementations now fall into a small number of categories, and the benefits of continued experimentation no longer justify the confusion and portability problems that have resulted from giving implementations so much freedom in this area. Moreover, the R5RS generic arithmetic is difficult to implement as efficiently as purely fixnum or purely flonum arithmetic. (Fixnum arithmetic is typically limited-precision integer arithmetic implemented using one or more representations that may be especially efficient on the executing machine; flonum arithmetic is typically limited-precision floating-point arithmetic using one or more representations that may be especially efficient on the executing machine.)
This SRFI is an effort to extend and clarify the R5RS arithmetic to make it more portable, more comprehensive, and enable faster programs.
Furthermore, one of us (Sperber) has argued that Scheme's arithmetic requires radical overhaul. The other (Clinger) agrees that revisions are needed. Whether these revisions qualify as radical is best left to the judgement of individual readers.
This SRFI proposes to revise section 6.2 ("Numbers") of R5RS by:
eqv?
to behave more sensibly with inexact numbers