[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

corrected reference implementation



R Kent Dybvig sent me two bug reports, complete with small
tests that illustrate the bugs, pointing out that (1) my
reference implementation for SRFI 85 could go into an
infinite loop on some inputs and (2) consumed exponential
space on some inputs.

A corrected reference implementation appears below in the
form of an ERR5RS/R6RS library, followed by an R6RS
top-level program consisting of three test cases that
illustrate the bugs.

I apologize for my errors, and I thank Kent for finding
them.

Will

--------

; Corrected reference implementation for SRFI 85.

(library (local srfi-85)
  (export equiv?)
  (import (rnrs base)
          (rnrs bytevectors)
          (rnrs lists)
          (rnrs hashtables)
          (rnrs mutable-pairs))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; Copyright 2006 William D Clinger.
;;;
;;; Permission to copy this software, in whole or in part, to use this
;;; software for any lawful purpose, and to redistribute this software
;;; is granted subject to the restriction that all copies made of this
;;; software must include this copyright notice in full.
;;;
;;; I also request that you send me a copy of any improvements that you
;;; make to this software so that they may be incorporated within it to
;;; the benefit of the Scheme community.
;;;
;;; Last modified 5 December 2007
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; Uses R6RS hashtables.  Uses only:
;;;
;;; make-eq-hashtable
;;; hashtable-ref
;;; hashtable-set!
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; EQUIV?
;;;
;;; EQUIV? is a version of EQUAL? that terminates on all arguments.
;;;
;;; The basic idea of the algorithm is presented in
;;;
;;; J E Hopcroft and R M Karp.  A Linear Algorithm for
;;; Testing Equivalence of Finite Automata.
;;; Cornell University Technical Report 71-114,
;;; December 1971.
;;; http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR71-114
;;;
;;; The algorithm uses FIND and MERGE operations, which
;;; roughly correspond to done? and equate! in the code below.
;;; The algorithm maintains a stack of comparisons to do,
;;; and a set of equivalences that would be implied by the
;;; comparisons yet to be done.
;;;
;;; When comparing objects x and y whose equality cannot be
;;; determined without recursion, the algorithm pushes all
;;; the recursive subgoals onto the stack, and merges the
;;; equivalence classes for x and y.  If any of the subgoals
;;; involve comparing x and y, the algorithm will notice
;;; that they are in the same equivalence class and will
;;; avoid circularity by assuming x and y are equal.
;;; If all of the subgoals succeed, then x and y really are
;;; equal, so the algorithm is correct.
;;;
;;; If the hash tables give amortized constant-time lookup on
;;; object identity, then this algorithm could be made to run
;;; in O(n) time, where n is the number of nodes in the larger
;;; of the two structures being compared.
;;;
;;; If implemented in portable R5RS Scheme, the algorithm
;;; should still run in O(n^2) time, or close to it.
;;;
;;; This implementation uses two techniques to reduce the
;;; cost of the algorithm for common special cases:
;;;
;;; It starts out by trying the traditional recursive algorithm
;;; to bounded depth.
;;; It handles easy cases specially.

; How long should we try the traditional recursive algorithm
; before switching to the terminating algorithm?

(define equal:bound-on-recursion 100000)

(define (equiv? x y)

  ; The traditional recursive algorithm, with bounded recursion.
  ; Returns #f or an exact integer n.
  ; If n > 0, then x and y are equal and the comparison involved
  ; bound - n recursive calls.
  ; If n <= 0, then the algorithm terminated before
  ; it could determine whether x and y are equal.

  (define (equal? x y bound)
    (cond ((eq? x y)
           bound)
          ((<= bound 0)
           bound)
          ((and (pair? x) (pair? y))
           (if (eq? (car x) (car y))
               (equal? (cdr x) (cdr y) (- bound 1))
               (let ((result (equal? (cdr x) (cdr y) (- bound 1))))
                 (if result
                     (equal? (car x) (car y) result)
                     #f))))
          ((and (vector? x) (vector? y))
           (let ((nx (vector-length x))
                 (ny (vector-length y)))
             (if (= nx ny)
                 (let loop ((i 0)
                            (bound (- bound 1)))
                   (if (< i nx)
                       (let ((result (equal? (vector-ref x i)
                                             (vector-ref y i)
                                             bound)))
                         (if result
                             (loop (+ i 1) result)
                             #f))
                       bound))
                 #f)))
          ((and (bytevector? x) (bytevector? y))
           (if (bytevector=? x y) bound #f))
          ((and (string? x) (string? y))
           (if (string=? x y) bound #f))
          ((eqv? x y)
           bound)
          (else #f)))

  ; Returns #t iff x and y would have the same (possibly infinite)
  ; printed representation.  Always terminates.

  (define (equiv? x y)
    (let ((done (initial-equivalences)))

      ; done is a hash table that maps objects to their
      ; equivalence classes.
      ;
      ; Algorithmic invariant:  If all of the comparisons that
      ; are in progress (pushed onto the control stack) come out
      ; equal, then all of the equivalences in done are correct.
      ;
      ; Invariant of this implementation:  The equivalence classes
      ; omit easy cases, which are defined as cases in which eqv?
      ; always returns the correct answer.  The equivalence classes
      ; also omit strings, because strings can be compared without
      ; risk of circularity.
      ;
      ; Invariant of this prototype:  The equivalence classes include
      ; only pairs and vectors.  If records or other things are to be
      ; compared recursively, then they should be added to done.
      ;
      ; Without constant-time lookups, it is important to keep
      ; done as small as possible.  This implementation takes
      ; advantage of several common cases for which it is not
      ; necessary to keep track of a node's equivalence class.

      (define (equiv? x y)
        ;(step x y done)
        (cond ((eqv? x y)
               #t)
              ((and (pair? x) (pair? y))
               (let ((x1 (car x))
                     (y1 (car y))
                     (x2 (cdr x))
                     (y2 (cdr y)))
                 (cond ((done? x y done)
                        #t)
                       ((eqv? x1 y1)
                        (equate! x y done)
                        (equiv? x2 y2))
                       ((eqv? x2 y2)
                        (equate! x y done)
                        (equiv? x1 y1))
                       ((easy? x1 y1)
                        #f)
                       ((easy? x2 y2)
                        #f)
                       (else
                        (equate! x y done)
                        (and (equiv? x1 y1)
                             (equiv? x2 y2))))))
              ((and (vector? x) (vector? y))
               (let ((n (vector-length x)))
                 (if (= n (vector-length y))
                     (if (done? x y done)
                         #t
                         (begin (equate! x y done)
                                (vector-equiv? x y n 0)))
                     #f)))
              ((and (bytevector? x) (bytevector? y))
               (bytevector=? x y))
              ((and (string? x) (string? y))
               (string=? x y))
              (else #f)))

      ; Like equiv? above, except x and y are known to be vectors,
      ; n is the length of both, and i is the first index that has
      ; not yet been pushed onto the todo set.
    
      (define (vector-equiv? x y n i)
        (if (< i n)
            (let ((xi (vector-ref x i))
                  (yi (vector-ref y i)))
              (if (easy? xi yi)
                  (if (eqv? xi yi)
                      (vector-equiv? x y n (+ i 1))
                      #f)
                  (and (equiv? xi yi)
                       (vector-equiv? x y n (+ i 1)))))
            #t))

      (equiv? x y)))

  ; A comparison is easy if eqv? returns the right answer.

  (define (easy? x y)
    (cond ((eqv? x y)
           #t)
          ((pair? x)
           (not (pair? y)))
          ((pair? y)
           #t)
          ((vector? x)
           (not (vector? y)))
          ((vector? y)
           #t)
          ((vector? x)
           (not (vector? y)))
          ((vector? y)
           #t)
          ((bytevector? x)
           (not (bytevector? y)))
          ((bytevector? y)
           #t)
          ((not (string? x))
           #t)
          ((not (string? y))
           #t)
          (else #f)))

  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;
  ; Tables mapping objects to their equivalence classes.
  ;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  ; FIXME:  Equivalence classes are represented as lists,
  ; which means they can't be merged in constant time.

  (define (initial-equivalences)
    (make-eq-hashtable))

  ; Are x and y equivalent according to the table?

  (define (done? x y table)
    (memq x (hashtable-ref table y '())))

  ; Merge the equivalence classes of x and y in the table,
  ; and return the table.  Changes the table.

  (define (equate! x y table)
    (let ((xclass (hashtable-ref table x '()))
          (yclass (hashtable-ref table y '())))
      (cond ((and (null? xclass) (null? yclass))
             (let ((class (list x y)))
               (hashtable-set! table x class)
               (hashtable-set! table y class)))
            ((null? xclass)
             (let ((class0 (cons x (cdr yclass))))
               (set-cdr! yclass class0)
               (hashtable-set! table x yclass)))
            ((null? yclass)
             (let ((class0 (cons y (cdr xclass))))
               (set-cdr! xclass class0)
               (hashtable-set! table y xclass)))
            ((eq? xclass yclass)
             #t)
            ((memq x yclass)
             #t)
            (else
             (let ((class0 (append (cdr xclass) yclass)))
               (set-cdr! xclass class0)
               (for-each (lambda (y) (hashtable-set! table y xclass))
                         yclass)))))
    table)

  (let ((result (equal? x y equal:bound-on-recursion)))
    (if result
        (if (> result 0)
            #t
            (equiv? x y))
        #f)))

)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; Regression tests written by R Kent Dybvig.
;;; Converted into an R6RS top-level program by Will Clinger
;;; (so don't blame Kent for the indentation or brackets).
;;;
;;; Should print #t three times.
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(import (rnrs base)
        (rnrs io simple)
        (rnrs mutable-pairs)
        (local srfi-85))

[write

 (let ()
   (define x
     (let ([x1 (vector 'h)]
           [x2 (let ([x (list #f)]) (set-car! x x) x)])
       (vector x1 (vector 'h) x1 (vector 'h) x1 x2)))
   (define y
     (let ([y1 (vector 'h)]
           [y2 (vector 'h)]
           [y3 (let ([x (list #f)]) (set-car! x x) x)])
       (vector (vector 'h) y1 y1 y2 y2 y3)))
   (equal? x y))
]

[newline]

[write

 (let ()
   (define x
     (let ([x (cons (cons #f 'a) 'a)])
       (set-car! (car x) x)
       x))
   (define y
     (let ([y (cons (cons #f 'a) 'a)])
       (set-car! (car y) (car y))
       y))
   (equal? x y))

]

[newline]

[write

(let ([k 100])
  (define x
    (let ([x1 (cons 
                (let f ([n k])
                  (if (= n 0)
                      (let ([x0 (cons #f #f)])
                        (set-car! x0 x0)
                        (set-cdr! x0 x0)
                        x0)
                      (let ([xi (cons #f (f (- n 1)))])
                        (set-car! xi xi)
                        xi)))
                #f)])
      (set-cdr! x1 x1)
      x1))
  (define y
    (let* ([y2 (cons #f #f)] [y1 (cons y2 y2)])
      (set-car! y2 y1)
      (set-cdr! y2 y1)
      y1))
  [equal? x y])
]

[newline]