[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: +nan.0 problems

This page is part of the web mail archives of SRFI 77 from before July 7th, 2015. The new archives for SRFI 77 contain all messages, not just those from before July 7th, 2015.

 | From: "Marcin 'Qrczak' Kowalczyk" <qrczak@xxxxxxxxxx>
 | Date: Sat, 22 Oct 2005 20:52:50 +0200
 | Aubrey Jaffer <agj@xxxxxxxxxxxx> writes:
 | > The total order of the reals is a crucial property for many
 | > applications.
 | It is well known that the default order on the floating point
 | approximation of reals is not total.

  From Wikipedia, the free encyclopedia.

  In mathematics, a total order, linear order or simple order on a set
  X is any binary relation on X that is antisymmetric, transitive, and
  total.  This means that, if we denote the relation by <=, the
  following statements hold for all a, b and c in X:

      if a <= b and b <= a then a = b (antisymmetry)
      if a <= b and b <= c then a <= c (transitivity)
      a <= b or b <= a (totalness)

Which condition does it violate?