[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

This page is part of the web mail archives of SRFI 70 from before July 7th, 2015. The new archives for SRFI 70 contain all messages, not just those from before July 7th, 2015.

*To*: Aubrey Jaffer <agj@xxxxxxxxxxxx>, <bear@xxxxxxxxx>*Subject*: Re: inexactness vs. exactness*From*: Paul Schlie <schlie@xxxxxxxxxxx>*Date*: Sun, 07 Aug 2005 22:55:49 -0400*Cc*: <will@xxxxxxxxxxx>, <srfi-70@xxxxxxxxxxxxxxxxx>*Delivered-to*: srfi-70@xxxxxxxxxxxxxxxxx*In-reply-to*: <20050807172151.7647E1B77B4@xxxxxxxxxxxxxxxx>*User-agent*: Microsoft-Entourage/11.1.0.040913

> From: Aubrey Jaffer <agj@xxxxxxxxxxxx> > Each exact number corresponds to a single mathematical number. For > exact numbers, it is the programmer's responsibility to avoid using > numbers with magnitude or precision too large to be represented in the > implementation. > > Inexact numbers are approximate. Every mathematical number within the > (convex) range of inexacts supported by an implementation will round > to an inexact number on input or as a result of computation. The > neighborhood of mathematical numbers rounding to a particular inexact > number must be simply connected. > > Because real infinities are mandated (in implementations supporting > inexacts), all mathematical real numbers map to inexact numbers. For > non-real complex numbers, it is the programmer's responsibility to > avoid using numbers with magnitude too large to be represented in the > implementation. I pre-apologize if this is a dumb question, but as it seems that exact values are only interesting for integer ratios, which correspondingly seem reasonable to expect to have some practical limited representational precision, therefore also imply the necessity to depict an over/underflowed value (i.e. +/- infinity and reciprocals); why is it perceived as necessary and/or appropriate to presume it's the responsibility of the programmer to limit computed values to reasonable precision rational values as opposed to possibly more simply defining that exacts are merely only more exact than inexacts to some definable precision? As beyond academic definition of exact, pretending that an arbitrary exact implementation supports infinitely exact computations seems both naive and impractical?

**Follow-Ups**:**Re: inexactness vs. exactness***From:*bear

**References**:**Re: inexactness vs. exactness***From:*Aubrey Jaffer

- Prev by Date:
**Re: inexactness vs. exactness** - Next by Date:
**Re: inexactness vs. exactness** - Previous by thread:
**Re: inexactness vs. exactness** - Next by thread:
**Re: inexactness vs. exactness** - Index(es):