
1

SRFI 67: Compare procedures

Sebastian Egner and Jens Axel Søgaard
sebastian.egner-AT-philips.com and jensaxel-AT-soegaard.net

August 18, 2005

Contents

1 Abstract and Rationale . . . . . . . . . . . . . . . . . 1

2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1

3 Terminology and Conventions . . . . . . . . . . . . . . 2

4 Specification . . . . . . . . . . . . . . . . . . . . . . . . 2

4.1 Comparing atoms . . . . . . . . . . . . . . . . 2

4.2 Comparing lists and vectors . . . . . . . . . . . 3

4.3 Comparing pairs and improper lists . . . . . . 4

4.4 The default compare procedure . . . . . . . . . 4

4.5 Constructing compare procedures . . . . . . . . 4

4.6 Using compare procedures . . . . . . . . . . . . 5

5 The theory of compare functions . . . . . . . . . . . . 7

6 Design Rationale . . . . . . . . . . . . . . . . . . . . . 9

7 Related work . . . . . . . . . . . . . . . . . . . . . . . 14

8 Reference implementation . . . . . . . . . . . . . . . . 15

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Alphabetic Index . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1. Abstract and Rationale

This SRFI can be seen as an extension of the standard
procedures =, <, char<? etc. of R5RS —or even as a re-
placement. The primary design aspect in this SRFI is the
separation of representing a total order and using it. For
representing the order, we have chosen for truly 3-way com-
parisons. For using it we provide an extensive set of oper-
ations, each of which accepts a procedure used for compar-
ison. Since these compare procedures are often optional,
comparing built-in types is as convenient as R5RS , some-
times more convenient: For example, testing if the integer
index i lies in the integer range {0, . . . , n−1} can be written
as (<=/<? 0 i n), implicitly invoking default-compare.

As soon as new total orders are required, the infrastructure
provided by this SRFI is far more convenient and often even
more efficient than building each total order from scratch.

Moreover, in case Scheme users and implementors find this
mechanism useful and adopt it, the benefit of having a uni-
form interface to total orders to be used in data structures
will manifest itself. Most concretely, a new sorting pro-
cedure in the spirit of this SRFI would have the interface
(my-sort [ compare ] xs), using default-compare if the

optional compare was not provided. Then my-sort could
be defined using the entire infrastructure of this SRFI: Ef-
ficient 2- and 3-way branching, testing for chains and pair-
wise inequality, min/max, and general order statistics.

2. Introduction

This SRFI defines a mechanism for comparing Scheme val-
ues with respect to a total order (aka linear order) [1]. The
mechanism provides operations for:

1. comparing objects of the built-in types,

2. using a total order in situations that arise in programs,

3. facilitating the definition of a new total order.

In the following, these aspects will briefly be illustrated.

Traditionally, a total order is represented in Scheme by an
order predicate, like < or char<?. For the purpose of this
SRFI, however, a total order is represented by a Scheme-
procedure comparing its two arguments and returning ei-
ther -1, 0, or 1 depending on whether the first argument is
considered smaller, equal, or greater than the second argu-
ment respectively. Examples of such compare procedures
include (lambda (x y) (sign (- x y))) for comparing
real numbers, but also (lambda (x y) 0) comparing any-
thing. For most built-in types specified in the Revised5

Report on the Algorithmic Language Scheme ( R5RS , [3])
compare procedures are specified in Sections 4.1, 4.2, and
4.3 of this SRFI. An axiomatic definition of “compare pro-
cedure” is given in Section 5.

The primary reason for using 3-valued compare procedures
instead of (2-valued) order predicates is efficiency: When
comparison is computationally expensive, it is wasteful if
two predicates are evaluated where a single 3-valued com-
parison would suffice. This point is discussed in greater
detail in Section 6.

But dealing directly with 3-valued comparisons in the ap-
plication program is inconvenient and obscures intention:
For testing x < y one would have to write (eqv? (compare
x y) -1). For this reason, an operation <? is supplied
which allows to phrase the same test as (<? compare x
y). This is an example of mapping the three possible
outcomes of a comparison into the two boolean values
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{#f,#t}. Since <? takes the total order as an explicit pa-
rameter, a comfortably large arsenal of tests can be made
available for each and every total order (Section 4.6). This
deviates from the approach of R5RS , in which there are
only five operations (=, <,>,≤,≥)—and for each total or-
der (real/number, char, char-ci, string, string-ci) a
complete set of these five operation is provided.

But still, using <? would be inconvenient if the compare
procedure would have to be supplied explicitly every time.
For this reason, the parameter compare is often made op-
tional in this SRFI—and the procedure default-compare
is used whenever no compare procedure is passed explicitly.
Default-compare (Section 4.4) defines some resonable to-
tal order on the built-in types of R5RS .

For the third aspect of this SRFI, defining compare pro-
cedures, special control structures (macros) are provided
(Section 4.5). These control structures can be used in the
definition of a (potentially recursive) compare procedure.
This is best explained by an extended example.

Example Assume there is a type length representing
physical length. The type has an accessor procedure
meters returning the length in meters (a real number).
A compare procedure for lengths can then be defined in
terms of real-compare (Section 4.1) as:

(define (length-compare length1 length2)

(real-compare (meters length1) (meters length2)))

Now, (<? length-compare x y) tests if length x is
shorter than length y. Also, (<=/<? length-compare a x
b) tests if length x lies between length a (incl.) and length
b (excl.) The expression (min-compare length-compare
x y z) is a shortest of the lengths x, y, and z. Like-
wise, (chain<? length-compare x1 x2 x3 x4) test if
the lengths x1 x2 x3 x3 are strictly increasing, and so on
(refer to Section 4.6).

Furthermore, assume there is another type box repre-
senting a physical box. The type has procedures width,
height, and depth accessing the dimension (each giving a
length). A compare procedure for boxes, comparing first
by width then by height and then by depth, can be defined
using the control structure refine-compare (Section 4.5)
as:

(define (box-compare box1 box2)

(refine-compare

(length-compare (width box1) (width box2))

(length-compare (height box1) (height box2))

(length-compare (depth box1) (depth box2))))

This time, (<? box-compare b1 b2) tests if box b1 is
smaller than box b2—in the sense of the order defined. Of
course, all the other tests, minimum, maximum etc. are
available, too.

As a final complication, assume that there is also a type
bowl with accessors radius (a length) and open? (a
boolean). Bowls are to be compared first by whether they
are open or closed, and then by radius. However, bowls
and boxes also need to be compared to each other, ordered
such that a bowl is considered “smaller” than a box. (There
are type-test predicates box? and bowl?). Using the con-
trol structure select-compare (Section 4.5) this can be
expressed as:
(define (container-compare c1 c2)

(select-compare c1 c2

(bowl? (boolean-compare (open? c1) (open? c2))

(length-compare (radius c1) (radius c2)))

(box? (box-compare c1 c2))

(else "neither bowls nor boxes" c1 c2)))

This is an example of “hierarchical extension” of compare
procedures, as explained in Section 5. Also note the im-
plicit use of refine-compare in the bowl?-case.

The preceeding example illustrates the main functionality
of this SRFI. For other examples, refer to Section 4.4, and
to the file examples.scm included in the reference imple-
mentation.

3. Terminology and Conventions

A compare procedure is a Scheme-procedure of two argu-
ments returning an exact integer in {−1, 0, 1} such that
the valid input values are ordered according to some total
order. A compare procedure, together with a set of Scheme
values to which it is applicable, represents a compare func-
tion as defined in Section 5.

A comparison is either an expression applying a compare
procedure to two values, or the result of such an expression.

Each operation (macro or procedure) processing the value
of a comparison checks if the value is indeed an exact inte-
ger in the set {−1, 0, 1}. If this is not the case, an error is
signalled.

Compare procedures expecting certain types of argument
should raise an error in case the arguments are not of
this type. For most compare procedures specified in this
SRFI, this behavior is required. A compare procedure
compare can be used for type-checking value x by evaluat-
ing (compare x x), in case that is desired. This is useful
in procedures like chain<? which guarantee to check each
argument unconditionally.

4. Specification

4.1. Comparing atoms

In this section, compare procedures for most of the atomic
types of R5RS are defined: Booleans, characters, strings,
symbols, and numbers.
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As a general naming convention, a procedure named

type-compare-order

compares two object of the type type with respect to a
total order for which order is a mnemonic hint (e.g. -ci
for case-insensitive). Of course, -order may be absent if
there is just one order or the order is obvious. It is an
error if a compare procedure accepting objects of a certain
type is called with one or two arguments not of that type.

(boolean-compare bool1 bool2) procedure

Compares two booleans, ordered by #f < #t. Note: A

non-#f value is not interpreted as a “true value,” but rather an

error will be signalled.

(char-compare char1 char2) procedure
(char-compare-ci char1 char2) procedure

Compare characters as char<=? and char-ci<=? respec-
tively. The suffix -ci means “case insensitive.”

(string-compare string1 string2) procedure
(string-compare-ci string1 string2) procedure

Compare strings as string<= and string-ci<=?. The suf-
fix -ci means “case insensitive.” Note: Compare-string

could be defined as

(define (string-compare string1 string2)

(vector-compare-as-list char-compare

string1 string2

string-length string-ref))

(symbol-compare symbol1 symbol2) procedure

Compares symbols as string<= on the names returned by
symbol->string.

(integer-compare x y) procedure
(rational-compare x y) procedure
(real-compare x y) procedure
(complex-compare x y) procedure
(number-compare x y) procedure

Compare two numbers. It is an error if an argument is not
of the type specified by the name of the procedure.

Complex numbers are ordered lexicographically on pairs
(re, im). For objects representing real numbers sign(x−y)
is computed. The ordering for values satisfying real? or
complex? but not representing a real or complex number
should be consistent with procedures = and < of R5RS ,
and apart from that it is unspecified.

Numerical compare procedures are compatible with the
R5RS numerical tower in the following sense: If S is a sub-
type of the numerical type T and x, y can be represented
both in S and in T , then compare-S and compare-T com-
pute the same result. Note: Floating point formats usually

include several symbolic values not simply representing rational
numbers. For example, the IEEE 754 standard defines -0, -Inf,
+Inf, and NaN (”not a number”) for continuing a calculation in
the presence of error conditions. The behavior of the numerical
comparison operation is unspecified in case an argument is one
of the special symbols. Warning: The propagation of inex-
actness can lead to surprises. In a Scheme system propagating
inexactness in complex numbers (such as PLT, version 208):

(complex-compare (make-rectangular (/ 1 3) 1.)

(make-rectangular (/ 1 3) -1))

=⇒ -1

At first glance, one might expect the first complex number to

be larger, because the numbers are equal on their real parts

and the first imaginary part (1.) is larger than the second (-1).

Closer inspection reveals that the decimal dot causes the first

real part to be made inexact upon construction of the complex

number, and since (exact->inexact (/ 1 3)) is less than (/

1 3) in the underlying floating point format used, the real parts

decide the comparison of the complex numbers.

4.2. Comparing lists and vectors

In this section compare procedures are defined for Scheme
lists and vectors—and for objects that can be accessed like
lists or like vectors.

An object x can be accessed like a vector if there are proce-
dures size and ref such that (size x) is a non-negative
integer n indicating the number of elements, and (ref x
i) is the i-th element of x for i ∈ {0, . . . , n − 1}. The
default vector access procedures are vector-length and
vector-ref.

An object x can be accessed like a (proper) list if there
are procedures empty?, head, and tail such that (empty?
x) is a boolean indicating that there are no elements in
x, (head x) is the first element of x, and (tail x) is an
object representing the residual elements of x. The default
list access procedures are null?, car, and cdr.

Independent of the way the elements are accessed, the nat-
ural ordering of vectors and lists differs: Sequences are
compared as vectors if shorter sequences are smaller than
longer sequences, and sequences of the same size are com-
pared lexicographically. Sequences are compared as lists
if the empty sequence is smallest, and two non-empty se-
quences are compared by their first elements, and only if
the first elements are equal the residual sequences are com-
pared, recursively.

(vector-compare
[ compare ] x y [ size ref ]) procedure

(vector-compare-as-list
[ compare ] x y [ size ref ]) procedure

(list-compare
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[ compare ] x y [ empty? head tail ]) procedure
(list-compare-as-vector

[ compare ] x y [ empty? head tail ]) procedure

Compare two sequences x and y , using compare for
comparing elements. The result is an exact integer in
{−1, 0, 1}. If compare is not supplied, default-compare is
used.

The procedure named access-compare-as-order accesses
the objects like access and compares them with respect to
the order given by order. The names type-compare are
abbreviations for type-compare-as-type.

Examples:

(list-compare ’(2) ’(1 2)) =⇒ 1

(list-compare-as-vector ’(2) ’(1 2)) =⇒ -1

(vector-compare ’#(2) ’#(1 2)) =⇒ -1

(vector-compare-as-list ’#(2) ’#(1 2)) =⇒ 1

4.3. Comparing pairs and improper lists

In this section, compare procedures for Scheme pairs and
(possibly) improper lists are defined.

(pair-compare-car compare) procedure
(pair-compare-cdr compare) procedure

Construct a compare procedure on pairs which only uses
the car (only the cdr, respectively), and ignores the other.
One could define

(define (pair-compare-car compare)

(lambda (x y) (compare (car x) (car y))))

Rationale: Pair-compare-car can be used to turn a search

data structure (e.g. a heap) into a dictionary: Store (key .

value) pairs and compare them using the compare procedure

(pair-compare-car compare-key).

(pair-compare compare-car compare-cdr pair1 pair2)
(pair-compare [ compare ] obj1 obj2) procedure

Compares two pairs, or (possibly improper) lists.

The 4-ary form compares two pairs pair1 pair2 by compar-
ing their cars using compare-car , and if the cars are equal
the cdrs are compared using compare-cdr .

The 3-ary form compares two objects by type using the
ordering of types

null < pair < neither-null-nor-pair.

Two objects of type neither-null-nor-pair are compared us-
ing compare. Two pairs are compared by using compare on
the cars, and if the cars are equal by recursing on the cdrs.

The 2-ary form uses default-compare for compare.

(pair-compare ’() ’foo) =⇒ -1

(pair-compare ’() ’(1 . 2))) =⇒ -1

(pair-compare ’(1 . 2) ’foo) =⇒ -1

(pair-compare 3 4) =⇒ -1

4.4. The default compare procedure

It is convenient to have a compare procedure readily avail-
able for comparing most built-in types.

(default-compare obj1 obj2) procedure

compares its arguments by type using the ordering

null < pair < boolean < char < string < symbol <
number < vector < other

Two objects of the same type type are compared as
type-compare would, if there is such a procedure. The type
null consists of the empty list ’(). The effect of comparing
two other objects or of comparing cyclic structures (made
from lists or vectors) is unspecified. (Implementations are
encouraged to add comparisons for other built-in types,
e.g. records, regexps, etc.) Rationale: Default-compare

refines pair-compare by splitting neither-null-nor-pair. Note:
Default-compare could be defined as follows (mind the order
of the cases!):

(define (default-compare x y)

(select-compare x y

(null? 0)

(pair? (default-compare (car x) (car y))

(default-compare (cdr x) (cdr y)))

(boolean? (boolean-compare x y))

(char? (char-compare x y))

(string? (string-compare x y))

(symbol? (symbol-compare x y))

(number? (number-compare x y))

(vector? (vector-compare default-compare x y))

(else (error "unrecognized types" x y))))

4.5. Constructing compare procedures

An important goal of this SRFI is to provide a mechanism
for defining new compare procedures as conveniently as
possible. The syntactic extensions defined in this section
are the primary utilities for doing so.

(refine-compare 〈c1〉 . . . ) syntax

Syntax: The 〈ci〉 are expressions.

Semantics: The arguments 〈c1〉 . . . are evaluated from left
to right until a non-zero value is found (which then is the
value) or until there are no more arguments to evaluate (in
which case the value is 0). It is allowed that there are no
arguments at all.
Note: This macro is the preferred way to define a compare
procedure as a refinement (refer to Section 5). Example:
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(define (compare-rectangle r s)

(refine-compare

(compare-length (width r) (width s))

(compare-length (height r) (height s))))

(select-compare 〈x1〉 〈x2〉 〈clause1〉 . . . ) syntax

Syntax: Each 〈clause〉, with the possible exception of the
last, is of the form

(〈type?〉 〈c1〉 . . . )

where 〈type?〉 is an expression evaluating to a predicate
procedure, and 〈ci〉 are expressions evaluating to an exact
integer in {−1, 0, 1}. The last 〈clause〉 may be an “else
clause”, which has the form

(else 〈c1〉 . . . ).

Semantics: Select-compare is a conditional for defining
hierarchical extensions and refinements of compare proce-
dures (refer to Section 5). It compares the values of 〈x1〉
and 〈x2〉 by trying the type tests in order, and applies
an implict refine-compare on the consequences upon a
match.

In more detail, evaluation proceeds as follows: First 〈x1〉
and 〈x2〉 are evaluated in unspecified order, resulting in val-
ues x1 and x2, respectively. Then the clauses are evaluated
one by one, from left to right.

For clause (〈type?〉 〈c1〉 . . . ), first 〈type?〉 is evaluated re-
sulting in a predicate procedure type? and then the ex-
pressions (type? x1) and (type? x2) are evaluated and in-
terpreted as booleans. If both booleans are true then the
overall value is (refine-compare 〈c1〉 . . . ). If only the
first is true the result is -1, if only the second is true the
result is 1, and if neither is true the next clause is consid-
ered. An else clause is treated as if both tests where true.
If there are no clauses left, the result is 0.

Select-compare evaluates 〈x1〉 and 〈x2〉 exactly once, even
in the absence of any clauses. Moreover, each 〈type?〉 is
evaluated at most once and the resulting procedure type?
is called at most twice.

Note: An example of select-compare is the definition of

default-compare given above.

(cond-compare 〈clause1〉 . . . ) syntax

Syntax: Each 〈clause〉, with the possible exception of the
last, is of the form

((〈t1〉 〈t2〉) 〈c1〉 . . . )

where 〈t1〉 and 〈t2〉 are expressions evaluating to booleans,
and 〈ci〉 are expressions evaluating to an exact integer in
{−1, 0, 1}. The last 〈clause〉may be an “else clause”, which
has the form

(else 〈c1〉 . . . ).

Semantics: Cond-compare is another conditional for defin-
ing hierarchical extensions and refinements of compare pro-
cedures (refer to Section 5).

Evaluation proceeds as follows: The clauses are evaluated
one by one, from left to right. For clause ((〈t1〉 〈t2〉) 〈c1〉
. . . ), first 〈t1〉 and 〈t2〉 are evaluated and the results are
interpreted as boolean values. If both booleans are true
then the overall value is (refine-compare 〈c1〉 . . . ). If
only the first is true the result is -1, if only the second is
true the result is 1, and if neither is true the next clause is
considered. An else clause is treated as if both booleans
where true. If there are no clauses left (or there are no
clauses to begin with), the result is 0.

Cond-compare evaluates each expression at most once.

Rationale: Cond-compare and select-compare only differ in

the way the type tests are specified. Both ways are equivalent,

and each way is sometimes more convenient than the other.

4.6. Using compare procedures

The facilities defined in this section provide a mechanism
for using a compare procedure (passed as a parameter) in
the different situations arising in applications.

(if3 〈c〉 〈less〉 〈equal〉 〈greater〉) syntax

Syntax: 〈c〉, 〈less〉, 〈equal〉, and 〈greater〉 are expressions.

Semantics: If3 is the 3-way conditional for comparisons.
First 〈c〉 is evaluated, resulting in value c. The value c
must be an exact integer in {−1, 0, 1}, otherwise an error
is signalled. If c = −1 then the value of the if3-expression
is obtained by evaluating 〈less〉. If c = 0 then 〈equal〉 is
evaluated. If c = 1 then 〈greater〉 is evaluated.

Note: As an example, the following procedure inserts x into
the sorted list s, possibly replacing the first equivalent element.

(define (insert compare x s)

(if (null? s)

(list x)

(if3 (compare x (car s))

(cons x s)

(cons x (cdr s)) ; replace

(cons (car s) (insert compare x (cdr s))))))

Rationale: If3 is the preferred way of branching on the result

of a comparison in case all three branches are different.

(if=? 〈c〉 〈consequent〉 [ 〈alternate〉 ]) syntax
(if<? 〈c〉 〈consequent〉 [ 〈alternate〉 ]) syntax
(if>? 〈c〉 〈consequent〉 [ 〈alternate〉 ]) syntax
(if<=? 〈c〉 〈consequent〉 [ 〈alternate〉 ]) syntax
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(if>=? 〈c〉 〈consequent〉 [ 〈alternate〉 ]) syntax
(if-not=? 〈c〉 〈consequent〉 [ 〈alternate〉 ]) syntax

Syntax: 〈c〉, 〈consequent〉, and 〈alternate〉 are expressions.
If 〈alternate〉 is not provided, (if #f #f) is used.

Semantics: These six macros are 2-way conditionals for
comparisons. First 〈c〉 is evaluated, resulting in value c.
The value c must be an exact integer in {−1, 0, 1}, other-
wise an error is signalled. Then, depending on the value
of c and the name of the macro, either 〈consequence〉 or
〈alternate〉 is evaluated, and the resulting value is the value
of the conditional expression.

The branch is chosen according to the following table:

〈consequent〉 〈alternate〉
if=? c = 0 c ∈ {−1, 1}
if<? c = −1 c ∈ {0, 1}
if>? c = 1 c ∈ {−1, 0}
if<=? c ∈ {−1, 0} c = 1
if>=? c ∈ {0, 1} c = −1
if-not=? c ∈ {−1, 1} c = 0

Note: The macros if<=? etc. are the preferred way of 2-way

branching based on the result of a comparison.

(=? [ compare ] [ x y ]) procedure
(<? [ compare ] [ x y ]) procedure
(>? [ compare ] [ x y ]) procedure
(<=? [ compare ] [ x y ]) procedure
(>=? [ compare ] [ x y ]) procedure
(not=? [ compare ] [ x y ]) procedure

If the values x and y are given, test if x and y are in the re-
lation specified by the name of the procedure rel? , with re-
spect to compare procedure compare; otherwise construct
a predicate procedure.

In the forms (rel? [ compare ] x y), the result is a
boolean (either #t or #f) depending on (compare x y)
and the test rel? as specified for if<? etc. If compare is
not supplied, default-compare is used.

In the form (rel? [ compare ]), the predicate procedure
(lambda (x y) (rel? compare x y)) is constructed. Again,
if compare is not supplied, default-compare is used.

A few examples for illustration

(>? "laugh" "LOUD") =⇒ #t

(<? string-compare-ci "laugh" "LOUD") =⇒ #t

(define char<=? (<=? char-compare))

(sort-by-less ’(1 a "b") (<?)) =⇒ ’("b" a 1)

(sort-by-less ’(1 a "b") (>?)) =⇒ ’(1 a "b")

Warning: A common mistake is writing (<=? x y z) where

(<=/<=? x y z) is meant; this will most likely manifest itself

at the time the expression (x y z) is evaluated.

(</<? [ compare ] [ x y z ]) procedure
(</<=? [ compare ] [ x y z ]) procedure

(<=/<? [ compare ] [ x y z ]) procedure
(<=/<=? [ compare ] [ x y z ]) procedure
(>/>? [ compare ] [ x y z ]) procedure
(>/>=? [ compare ] [ x y z ]) procedure
(>=/>? [ compare ] [ x y z ]) procedure
(>=/>=? [ compare ] [ x y z ]) procedure

Test if x , y , and z form a chain with the two relations
specified by the name of the procedure rel1/rel2? , with
respect to the compare procedure compare.

If compare is not provided, default-compare is used. If
x y z are not provided, a predicate procedure of three
arguments is constructed. The order in which the values
are compared is unspecified, but each value is compared at
least once.

Note: (<=/<? real-compare 0 x 1) tests if x is a real number

in the half open interval [0, 1).

(chain=? compare x1 . . . ) procedure
(chain<? compare x1 . . . ) procedure
(chain>? compare x1 . . . ) procedure
(chain<=? compare x1 . . . ) procedure
(chain>=? compare x1 . . . ) procedure

Test if the values x1 . . . (zero or more values) form a chain
with respect to the relation specified by the name of the
procedure, and with respect to the compare procedure
compare. The result is a boolean (either #t or #f.) The
order in which the values are compared is unspecified, but
each value is compared at least once (even if there is just
one.)

A sequence of values x1, . . . , xn forms a chain with respect
to the relation rel? if (rel? compare xi xj) for all 1 ≤ i <
j ≤ n. In particular, this is the case for n ∈ {0, 1}.
Since the relations =, <,>,≤, and ≥ are transitive, it is
sufficient to test (rel? compare xi xi+1) for 1 ≤ i < n.

Note: The reason every xi participates in at least one compar-

ison is type-checking: After testing if the values form a chain,

these value may be assumed to be of the type comparable by

compare—and this holds irrespectively of the number of values,

or whether they form a chain.

(pairwise-not=? compare x1 . . . ) procedure

Tests if the values x1 . . . (zero or more values) are pairwise
unequal with respect to the compare procedure compare.
The result is a boolean (either #t or #f). The order in
which the values are compared is unspecified, but each
value is compared at least once (even if there is just one).

The values x1, . . . , xn are pairwise unequal if (not=?
compare xi xj) for all i 6= j. In particular, this is the
case for n ∈ {0, 1}.
Since compare defines a total ordering on the values, the
property can be checked in time O(n logn), and imple-
mentations are required to do this. (For example by first
sorting and then comparing adjacent elements).
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(min-compare compare x1 x2 . . . ) procedure
(max-compare compare x1 x2 . . . ) procedure

A minimum or maximum of the values x1 x2 . . . (one
or more values) with respect to the compare procedure
compare.

The result is the first value that is minimal (maximal, re-
spectively). The order in which the values are compared is
unspecified, but each value is compared at least once (even
if there is just one value).

(kth-largest compare k x0 x1 . . . ) procedure

The k-th largest element of values x0 x1 . . . (one or more
values) with respect to the compare procedure compare.

More precisely, (kth-largest compare k x0 . . . xn−1)
returns the (modulo k n)-th element of the unique se-
quence obtained by stably sorting (x0 · · ·xn−1). (Recall
that a sorting algorithm is stable if it does not permute
items with equal key, i.e. equivalent w.r.t. compare).

The argument k is an exact integer, and n ≥ 1. The order
in which the values xi are compared is unspecified, but
each value is compared at least once (even if there is just
one value).

Note: The 0-th largest element is the minimum, the (−1)-st

largest element is the maximum. The median is the (n−1)/2-th

largest element if n is odd, and the average of the (n/2− 1)-st

and n/2-th largest elements if n is even.

(compare-by< lt-pred [ x y ]) procedure
(compare-by> gt-pred [ x y ]) procedure
(compare-by<= le-pred [ x y ]) procedure
(compare-by>= ge-pred [ x y ]) procedure
(compare-by=/< eq-pred lt-pred [ x y ]) procedure
(compare-by=/> eq-pred gt-pred [ x y ]) procedure

If optional arguments x and y are present then these are
compared with respect to the total order defined by the
predicate(s) given; the result is in {−1, 0, 1}. If x and y are
not present then a procedure comparing its two arguments
using the predicate(s) given is constructed and returned.

The predicate procedures mean the following: (lt-pred x
y) tests if x < y, le-pred tests for ≤, gt-pred for >, ge-pred
for ≥, and eq-pred tests if x and y are equivalent. The
result returned by a predicate procedure is interpreted as
a Scheme truth value (i.e. #f is false and non-#f is true).

The purpose of the procedures compare-bypredicate(s) is
to define a compare procedure from an order predicate,
and possibly an additional equivalence predicate. If an
equivalence predicate eq-pred is given, it is called before
the order predicate because the equivalence may be coarser
than the total ordering, and it may also be cheaper.

Note: Char-compare could be defined in terms of char<=? as

(define char-compare (compare-by<= char<=?))

(debug-compare compare) procedure

Constructs a compare procedure equivalent to compare but
with debugging code wrapped around the calls to compare.
The debugging code signals an error if it detects a violation
of the axioms of a compare function. For this it is assumed
that compare has no side-effects.

More specifically, (debug-compare compare) evaluates to
a compare procedure compare1 which checks reflexivity, an-
tisymmetry, and transitivity of compare based on the ar-
guments on which compare1 is called:

The procedure compare1 checks reflexivity on any value
passed to compare, antisymmetry on any pair of values on
which compare is called, and transitivity on triples where
two of the arguments are from the current call to compare1

and the third is a pseudo-random selection from the two
arguments of the previous call to compare1.

Rationale: The test coverage is partial and determined pseudo-

randomly, but the execution time of compare1 is only a constant

factor larger than the execution time of compare.

5. The theory of compare functions

This section contains a theoretical justification for the con-
cept “compare function”. First an axiomatic definition of
compare functions is given. Then it is proved that compare
functions are just an unconventional way of defining total
orders on equivalence classes of elements—and mathemat-
ically that is all there is to say about compare functions.

At this point, a mathematician may wonder why we in-
troduce compare functions in the first place. The answer
is: Because they are convenient and efficient for writing
programs involving total orders.

In order to make this SRFI as accessible as possible we give
the theorems and proofs explicitly, no matter how trivial
they are.

Definition: A compare function on a set X is a function
c : X ×X → {−1, 0, 1} such that for all x, y, z ∈ X
(R) c(x, x) = 0,
(A) c(x, y) + c(y, x) = 0,
(T) c(x, y) ≤ 0 and c(y, z) ≤ 0 implies c(x, z) ≤ 0.

We call the properties (R) reflexivity, (A) antisymmetry,
and (T) transitivity.

The archetypical compare function is

cR : R× R → {−1, 0, 1}
(x, y) 7→ sign(x− y);
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it compares real numbers with respect to their canonical
order. Obviously, x < y if and only if c(x, y) < 0, which we
will fix as our sign convention: Instead of writing “c(x, y) <
0” we will often simply write “x < y” when the compare
function c is obvious from the context. (And of course, the
convention extends to ≤, =, ≥, and > in the obvious way.)

The first theorem states that each compare function gives
rise to an equivalence relation in a natural way.

Theorem: Let c be a compare function on X. Then the
relation ∼ defined by

x ∼ y :⇔ c(x, y) = 0,

for x, y ∈ X, is an equivalence relation on X.

Proof: Recall that an equivalence relation is reflexive,
symmetric, and transitive [2]. We check:

“Reflexive”: Consider x ∈ X. By (R) c(x, x) = 0, so x ∼ x.

“Symmetric”: Consider x, y ∈ X such that x ∼ y. By
definition of ∼ we have c(x, y) = 0. By (A) this implies
c(y, x) = −c(x, y) = 0. Thus y ∼ x.

“Transitive”: Consider x, y, z ∈ X such that x ∼ y and
y ∼ z. This means c(x, y) = c(y, z) = 0. By (T) this
implies c(x, z) ≤ 0. Moreover, by symmetry also c(y, x) =
c(z, y) = 0 and by (T) this implies c(z, x) ≤ 0. Hence,
c(x, z) = 0 meaning x ∼ z.

The next theorem states that the equivalence classes de-
fined by a compare function are also naturally ordered.

Theorem: Let c be a compare function on X and let ∼
be the equivalence relation of the previous theorem. We
write [x] for the equivalence class containing x, i.e. [x] =
{y ∈ X | c(x, y) = 0}. Then the relation ≤ defined by

[x] ≤ [y] :⇔ c(x, y) ≤ 0,

for x, y ∈ X, is a total order on the set {[x] | x ∈ X} of all
equivalence classes.

Proof: Recall that a total order relation is reflexive,
(weakly) antisymmetric, transitive, and all elements are
comparable [1]. Again, we check:

“Reflexive”: Consider x ∈ X. By (R) c(x, x) = 0, so
[x] ≤ [x] for all x ∈ X.

“Antisymmetric”: Consider x, y ∈ X such that [x] ≤ [y]
and [y] ≤ [x]. By definition of ≤, this means c(x, y) ≤ 0
and c(y, x) = −c(x, y) ≤ 0 by (A). Hence, c(x, y) = 0 which
means [x] = [y].

“Transitive”: Consider x, y, z ∈ X such that [x] ≤ [y] and
[y] ≤ [z]. By definition of ≤ this means c(x, y) ≤ 0 and

c(y, z) ≤ 0. By (T) this implies c(x, z) ≤ 0 which means
[x] ≤ [z].

“Comparable”: For x, y ∈ X, c(x, y) ∈ {−1, 0, 1} as c is a
compare function. Hence, c(x, y) ≤ 0, meaning [x] ≤ [y],
or c(x, y) ≥ 0, meaning [y] ≤ [y] by (A).
Finally, the last theorem shows the converse of the previous
two: There is a unique compare function for each total
order on a set of equivalence classes.

Theorem: Let X be a set, ∼ an equivalence relation on
X, and≤ a total order on the set of equivalence classes with
respect to ∼. Then the function c : X × X → {−1, 0, 1}
defined by

c(x, y) =




−1 if [x] ≤ [y] and not x ∼ y,

0 if x ∼ y,
1 if [y] ≤ [x] and not x ∼ y,

is a compare function on X giving rise to the order ≤ and
the equivalence relation ∼.

Proof: First note that c is well-defined as a function,
because [x] ≤ [y] and [y] ≤ [x] imply [x] = [y] (i.e. x ∼ y)
by the fact that ≤ is (weakly) antisymmetric. We check
the axioms of a compare function:

“(R)”: Reflexivity of ∼ implies c(x, x) = 0 for all x ∈ X.
“(A)”: Consider x, y ∈ X. Then [x] ≤ [y] or [y] ≤ [x]
because x and y are comparable with ≤. If both properties
hold then [x] = [y], meaning x ∼ y, so c(x, y) = c(y, x) = 0.
Otherwise, either c(x, y) = −1 and c(y, x) = 1 or the signs
are flipped. In either case, c(x, y) + c(y, x) = 0.
“(T)”: Consider x, y, z ∈ X such that c(x, y), c(y, z) ≤ 0.
Then [x] ≤ [y] and [y] ≤ [z] by definition of c. Since ≤ is
transitive, this implies [x] ≤ [z], meaning c(x, z) ≤ 0.
At this point the mathematics of compare functions is fin-
ished. However, it is instructive to explore constructions
making new compare functions from old ones.

Sign flip: Let c be a compare function on X. Then
(x, y) 7→ −c(x, y) is also a compare function on X; it is
identical to (x, y) 7→ c(y, x).

As it happens, there are only two functions f mapping
{−1, 0, 1} into itself such that (x, y) 7→ f(c(x, y)) is a com-
pare function if c is one: f(γ) = 0 and f(γ) = −γ.

Argument transformation: Let c be a compare func-
tion on X and consider a function ϕ : U → X. Then

(u, v) 7→ c(ϕ(u), ϕ(v))

is a compare function on the set U .

One could be tempted to consider the case c(ϕ(u), ψ(v)),
ϕ 6= ψ. But this only results in a compare function (i.e.
(R), (A), (T) hold) if c, ϕ, and ψ are closely related.
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Refinement: Let ccoarse, cfine be compare functions on
the same set X. Then

(x, y) 7→
{
ccoarse(x, y) if ccoarse(x, y) 6= 0,
cfine(x, y) otherwise

is a compare function. By induction, this construction can
be repeated a finite number of times, e.g. starting at the
coarsest of all compare functions: (x, y) 7→ 0.

Hierarchical extension: Let X,Y be disjoint sets and
let cX , cY be compare functions on X, Y , respectively.
Then

(u, v) 7→





cX(u, v) if u, v ∈ X,
−1 if u ∈ X and v ∈ Y ,
1 if u ∈ Y and v ∈ X,

cY (u, v) if u, v ∈ Y

is a compare function on X ∪ Y . The function refines
“X < Y ” by cX on X and cY on Y , respectively. This con-
struction can be generalized to an arbitrary family (mind
the axiom of choice) of compare functions on disjoint do-
mains.

In Scheme, this SRFI defines macros refine-compare,
select-compare, and cond-compare for providing conve-
nient and efficient ways of defining refinement, hierarchical
extension, argument transformation, and sign flip.

6. Design Rationale

In this section we present our reasoning behind the design
decisions made for this SRFI. We would like to be explicit
on this because we believe that design is not about the
outcome of decisions but about the alternatives considered.
The section is organized as a Q&A list.

Order predicates (2-way) or 3-way comparisons?

It is mathematical tradition to specify a total order in
terms of a “less or equal” (≤) relation. This usually car-
ries over to programming languages in the form of a <=
predicate procedure.

However, there are inherently three possible relations be-
tween two elements x and y with respect to a total order:
x < y, x = y, and x > y. (With respect to a partial or-
der there is a fourth: x and y are uncomparable.) This
implies that any mechanism based on 2-valued operations
(be it ≤, or (=, <), or other) has cases in which two expres-
sions must be evaluated in order to determine the relation
between two elements.

In practice, this is a problem if a comparison is computa-
tionally expensive. Examples of this are implicitly defined

orders in which the order of elements depends on their
relative position in some enumeration. (Think of com-
paring graphs by isomorphism type.) In this case, each
order predicate is as expensive as a compare procedure—
implying that a proper 3-way branch could be twice as fast
as cascaded 2-way branches. Hence, there is a potentially
considerable loss in performance, and it is purely due to
the interface for comparisons.

The primary disadvantage of bare 3-way comparisons is
that they are less convenient, both in use and in their def-
inition. Luckily, this problem can be solved quite satisfac-
torily using the syntactic (macro) and procedural abstrac-
tions of Scheme (refer to Sections 4.5 and 4.6).

How to represent the three cases?

We have considered the following alternatives for repre-
senting the three possible results of a comparison:

1. the exact integers -1, 0, and 1 (used in this SRFI),

2. the sign of an exact immediate integer,

3. the sign of any Scheme number satisfying real?,

4. three different symbols (e.g. ’<, ’=, and ’>),

5. an enumeration type consisting of three elements, and

6. a built-in type with self-evaluating special constants
(e.g. #<, #=, and #>).

The representation acts as an internal interface between
programs comparing objects and programs using these
comparisons.

The advantage of using only three values is that the rep-
resentation of each case is uniquely defined. In particular,
this enables the use of case instead of if, and it ensures
portability. Portability of numbers is problematic in R5RS
due to underspecification and inexactness.

The advantage of using a non-unique (numerical) represen-
tation is that the result of a computation can sometimes
immediately be used in a branch, much like the “non-#f
means true”-convention. However, with the operations in
Section 4.6 this advantage hardly matters. Moreover, the
“non-#f means true”-convention is a major cause of unex-
pected program behavior itself.

The advantage of using {−1, 0, 1} over using three symbols
is that the integers support additional operations, for ex-
ample they can directly be used in index computations. A
particularly useful operation is (* sign (compare x y))
which inverts the order relation depending on sign (either
−1 or 1). In addition, the integers are unique—once it
is known that comparisons result in integers it is obvious
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which integers. A minor consideration is that Scheme sys-
tems usually treat small integers as unboxed values, and
that integers are self-evaluating literals.

The advantage of using three symbols is that they can be
chosen to be more descriptive. For example, it is more
instructive to see (symbol-compare ’foo ’bar) result in
’greater than in 1. Unfortunately, there is no obvious
choice of name for the three symbols. Amoung the choices
that make sense are ’less ’equal ’greater, or ’lt ’eq
’gt, or ’< ’= ’>. A disadvantage of using symbols for the
three cases is that Scheme symbols are ordered, too, and
this ordering may differ from the desired ordered for the
three cases.

Some Scheme implementations provide a mecha-
nism for defining enumeration types. For example
define-enumerated-type of Scheme 48 can be used to
define a type comparison consisting of three objects,
say lt, eq, gt. The enumeration can also (directly) be
defined on top of SRFI 9 (Defining Record Types) [10]
by defining three new record types, each of which having
a single instance. We regard this approach as preferable
over three symbols because comparison results have their
own type, and a sufficiently advanced compiler could use
this information to eliminate redundant type-checks.

One step further in this direction is the following de-
sign alternative we have considered: Due to the fun-
damental nature of the type comparison for program-
ming, it would be worthwhile integrating it into the
core language of Scheme. This could take the follow-
ing form: There are three self-evaluating constants, e.g.
written #< #= #>, and these are the only instances of
the type comparison. The type supports two opera-
tions: comparison? and comparison-compare. Further-
more, eq?, eqv?, and equal? need to understand the com-
parison values. In other words, comparison is designed
after boolean. It is unclear, however, which problem this
tight integration of comparisons into the language is solv-
ing.

Given this situation, we have chosen for {−1, 0, 1}, while
providing facilities for using this conveniently—in partic-
ular it is hardly ever necessary to deal with the integers
directly.

How to order complex numbers?

Mathematically, no total order of the complex numbers ex-
ists which is compatible with the algebraic or topological
structure. Nevertheless, it is useful for programming pur-
poses to have some total order of complex numbers readily
available.

Several total orders on the complex numbers are at least
compatible with the natural ordering of real numbers. The
least surprising of these is lexicographic on (re, im).

How to order special floating point symbols?

Floating point formats often do not only represent ra-
tional numbers but extend this set by special sym-
bols, for example +Inf, -Inf, NaN (“Not a num-
ber”), and -0. How should these symbols be or-
dered with respect to the ordinary numerical values and
with respect to each other? (Refer to the discussion
archive starting with http://srfi.schemers.org/srfi-67/mail-
archive/msg00010.html.)

Let us briefly recall the purpose of the special symbols.
The general rationale for introducing special symbols into
a floating point format is for numerical calculations to con-
tinue in the presence of data-dependent errors, while still
retaining some meaningful information about the result.
The symbols +Inf and -Inf indicate that the calculation has
produced a value exceeding the representable range. The
special symbol -0, indicates that a calculation has produced
a value of unrepresentable small magnitude, but retains the
information that the underflow approached zero from the
negative side (otherwise it would be +0). This sign infor-
mation is useful in the presence of branch-cuts. Finally,
NaN indicates that the information about the value has
been lost entirely (example: -Inf + Inf) NaN avoids rais-
ing an exception and allows carrying on with other parts
of the calculation. It should be noted that several NaNs
can exist. For example in the IEEE 754 standard many bit
patterns represent NaN (whatever the interpretation).

As +Inf and -Inf are designed to represent extremal num-
bers, their ordering with respect to real numbers is obvious.
For signed zeros, the ordering is also obvious. However, the
notion of two zeros (or even three: -0, 0, and +0) is incom-
patible with the arithmetic structure of the real numbers.
Hence, in most situations all zeros should be treated as
equal, even though this can destroy information about re-
sults. But the alternative design may also make sense in
certain situations where the full information carried in a
floating point object is to be retained.

For NaN (or even several NaNs) the situation is even more
ambiguous because there is not even a natural order rela-
tion of NaN with the other possible floating point values.
One design alternative is to raise an error if NaN is to par-
ticipate in a comparison; the reasoning being “if the control
flow depends on a NaN you are in trouble anyway”. An
alternative is to define some order by force; the reasoning
being “if an object satisfies real? then it can be compared
with real-compare.” Neither approach is obviously better
than the other.

Given this situation, we have decided to leave the effect
of using a special floating point value in real-compare
unspecified, in line with the approach of R5RS . This ap-
proach might change once Scheme itself is more explicit
about floating point representations and numerical com-
putation.
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How to define default-compare?

The purpose of default-compare is providing some well-
defined way of comparing two arbitrary Scheme values.
This can be used in all situations in which the user is unwill-
ing to define a compare procedure explicitly, for example
because the actual details of the total order do not really
matter.

As an example, consider the task of dealing with sets
of sets of integers. In this case, one could simply use
sorted lists without repetition for representing lists and
default-compare already provides a total order.

However, there are limits as to how default-compare can
be defined. For example, default-compare cannot easily
be based on a hash code derived from the pointer repre-
senting an object due to the close dependency with the
garbage collection mechanism. Also, we believe it to be
more useful to applications if default-compare is based
on type and structure.

Unfortunately, this imposes limits on what can be com-
pared using default-compare because it is very desireable
to have a portable reference implementation. In particular,
portable ways of dealing with circular structures are overly
costly.

Naturally, the question arises how the types should be
ordered. For this question it is useful to understand
that boolean-compare and pair-compare both already
define a total order for all values (at least in prici-
ple). Hence, default-compare could refine one of them,
but unfortunately not both at the same time (unless
#f and ’() are minimum and maximum of the order,
respectively). Since pair-compare is more frequently
used than boolean-compare we base default-compare on
pair-compare. The other portably comparable types are
ordered by increasing complexity, which clearly is an arbi-
trary choice.

What is the “lexicographic order”?

The lexicographic order is a general way of defining an or-
dering for sequences from an ordering of elements:

In the lexicographic order, the empty sequence is the small-
est sequence of all, and two non-empty sequences are first
compared by their first element and only if these are equal
the residual sequences are compared, recursively.

The lexicographic order has its name from its use in a lex-
icon: For example, fun < funloving < jolly.

What is the “natural order” of lists and vectors?

By “natural order” of an abstract data type we mean a
total order that is defined to match the basic operations
operations supported by the data type.

The basic access operations with constant execution time
for Scheme lists are null?, car, and cdr. These are ex-
actly the operations needed for comparing two sequences
lexicographically.

The constant time access operations for Scheme vectors
are vector-length (size) and vector-ref (ref). Using
these operations, the fundamental ordering of vectors is
first comparing by size, and only if the sizes are equal, by
comparing the elements lexicographically.

Why are vectors not ordered lexicographically?

In this SRFI, lists and strings are ordered lexicographi-
cally (‘LEX’) by default, e.g. "12" < "2". The default or-
der of vectors is first by length and then lexicographically
(‘LENGTH-LEX’), e.g. #(2) < #(1 2). Alternatively, vec-
tors could be ordered purely lexicographically, too. In the
extreme, lists, strings, and vectors could even be ordered
lexicographically as sequences without distinguishing the
concrete representation, implying "12" = (#\1 #\2) =
#(#\1 #\2).
The choice affects vector-compare, default-compare,
and the way orders are interpreted conceptually. Moreover,
this SRFI introduces the terminology “ordered as lists” and
“ordered as vectors” to refer to the two fundamental ways
of lifting an order to sequences (LEX and LENGTH-LEX).
The choice also has implications for any other SRFI intro-
ducing container data types (e.g. 66 and 74), in case the
author wishes to specify default compare procedures com-
patible with this SRFI.

Summarizing the discussion, there seem to be three major
arguments:

1. Conceptually vectors and lists are representations of
sequences, and if there is only one ordering for them
it should be LEX.

2. LENGTH-LEX is more fundamental and efficient for
types supporting a constant-time ‘size’ operation.

3. Conceptually strings are “vectors of characters” and
strings are conventionally ordered LEX by default, so
vectors should be ordered LEX as well in order to min-
imize the potential for confusion.

(Please refer to the discussion archive for details,
in particular http://srfi.schemers.org/srfi-67/mail-
archive/msg00054.html.)

We consider 2. the most important due to its mathemati-
cal nature, followed by 1. because it simplifies the design.
While this controversial, we think that it is preferable to
introduce different orders for different data types, and not
derive every order from a single one for sequences. Finally,
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we consider 3. a weak argument because the default order-
ing of strings is motivated primarily historically for order-
ing written words of (small alphabet) natural languages.

Concerning other vector-like data types, such as those in-
troduced by SRFI 66 and 74, we recommend to define a
default ordering which appears most natural for the type.
These can conveniently be named type-as-ordering . In
cases where the order is of minor importance, we recom-
mend to be compatible with this SRFI.

Why so few higher-order constructions?

An alternative for the control structures (macros)
refine-compare, select-compare, and cond-compare is
a set of higher-order procedures for constructing compare
procedures.

We have chosen for control structures instead of higher-
order procedures for simplicity. This becomes par-
ticularly evident when a recursive compare procedure,
e.g. default-compare, is to be defined. Using
select-compare it is possible to define default-compare
simply as a procedure calling itself in some branches (re-
fer to the example in Section 4.4). In the higher-order
approach, the procedure under construction must also be
able to call itself, with arguments that are application spe-
cific. Expressing this with a flexible higher-order procedure
is much more indirect.

Why the operations <?, <=? etc.?

Programs need both 2-way branching and 3-way branching.
For 3-way branching, the conditional if3 is provided.

For 2-way branching, the set {−1, 0, 1} of results of a com-
parison is mapped onto the set {#f, #t}. There are eight
functions from a 3-set into a 2-set; all six non-constant
functions are provided as =?, <?, etc.

The five monotonic functions can be generalized to chains
of values. In order to make the compare procedure param-
eter optional in the ordinary comparisons, separate opera-
tions (chain<?, chain<=? etc.) are defined for chains. For
the sixth operation (not=?) the generalization to pairwise
unequality is defined as pairwise-not=?. This operation
can be implemented efficiently because the compare proce-
dure also defines a total order.

As chains of length three are still frequently tested in pro-
grams (think of a range check “0 ≤ i < n”), and often two
different relations are combined, there are special opera-
tions for chains of length three (</<?, </<=?, etc.)

For convenience, the compare procedure argument is made
optional as often as possible. Unfortunately, this opens
up a possibility for mistake: Writing (<=? x y z) where
(<=/<=? x y z) is meant. Fortunately, the mistake will
likely manifest itself at the time (x y z) is evaluated.

Why are <? etc. procedures, not macros?

The procedures <?, </<?, chain<? etc. could also have
been specified as macros. This would have the advantage
that they could make full use of “short evaluation”: A
chain of comparisons stops as soon as one of the compar-
isons has failed; all remaining argument expressions and
comparisons need not be evaluated. This is potentially
more efficient.

The advantage of procedures, on the other hand, is that in
Scheme they are “first class citizens,” meaning that they
can be passed as arguments and returned from higher-order
procedures.

Taking this approach one step further, one can even require
the compare procedures to check the types of all arguments,
even if the result of the comparison is already known. This
is what Section 6.2.5 of R5RS calls “transitive“ behavior
of the predicates =, <, etc. For example, (< 0 x y) first
tests if x is positive, and only if this is the case (< x y)
is tested. But even if x is not positive it is checked that y
is indeed a real—otherwise an error is raised. In “short
evaluation,” on the contrary, if x is not positive, y can be
an arbitrary Scheme value.

Clearly, “transitive” tests have an overhead, namely that
they need to execute potentially redundant type checks.
Even worse, as types are only known to the compare pro-
cedure the only way to check the type of a value is to
compare it, maybe with itself (which should result in 0 by
definition of a compare procedure).

The advantage of “transitive” comparisons is the automatic
insertion of a type assertion. For example, after (chain<?
integer-compare x y z) has been evaluated, no matter
the result, it is known that x, y, and z are integers. We
consider this advantage sufficiently important to pay the
price.

Why compare-by< etc.?

It is often easier to define an order predicate, and possi-
bly a separate equivalence relation, than it is to define a
compare procedure. For this case, compare< etc. provide a
convenient and robust way of constructing the associated
compare procedure.

As has been learned from writing the reference implemen-
tation, despite the fact that each of these procedures is just
a few lines of trivial code, they miraculously attract bugs.

How do I define a compare function from just an
equivalence?

You better don’t.
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A compare function defines a total order on equivalence
classes, and vice versa (refer to Section 5). Hence, a com-
pare procedure compare can be used to test equivalence:
(=? compare x y).

In reverse, one could be tempted to define a “compare func-
tion” c from just an equivalence relation ∼ as c(x, y) = 0 if
x ∼ y and c(x, y) = 1 otherwise. However, c is not antisym-
metric (unless all objects are equivalent, i.e. c(x, y) = 0 for
all x, y) and hence it is not a compare function. In fact,
there is no way at all of avoiding a total order on the equiv-
alence classes.

This is also reflected in the fact that there are efficient (log-
time) search data structures based on a total order, but we
know of no efficient (sublinear worst-case) data structures
based solely on an equivalence relation. The following pro-
gram takes time and space O(h), where h is the number of
equivalence classes in use:

(define (equal->compare equal)

(let ((reps ’()) (length-reps 0))

(define (index x)

(let loop ((i (- length-reps 1)) (rs reps))

(if (null? rs)

(let ((i length-reps))

(set! reps (cons x reps))

(set! length-reps (+ length-reps 1))

i)

(if (equal x (car rs))

i

(loop (- i 1) (cdr rs))))))

(lambda (x y)

(integer-compare (index x) (index y)))))

If equal is an equivalence predicate (i.e. it is reflexive, sym-
metric, and transitive) then (equal->compare equal) is
a compare procedure for the objects comparable by equal.
The total order defined is unspecified (as it depends on call
sequence).

Note that the equivalence predicate equal could be defined
by using a union-find data structure. But keep in mind
that the equivalence relation represented by equal must
not change while (equal->compare equal) is in use–so
the union-find data structure must be unite classes.

How do I switch from R5RS to this SRFI?

As it happens, the specification of this SRFI is fully com-
patible with the 25 order predicates found in R5RS .
The easiest way of switching is by defining the R5RS
operations in terms of this SRFI. Refer to the file
http://srfi.schemers.org/srfi-67/
implementation/r5rs-to-srfi.scm for the corresponding
Scheme-code.

Alternatively, each expression involving a reference to an
R5RS order predicate can be transformed into an equiv-
alent expression using the facilities of this SRFI. Be re-
minded though that this requires an understanding of the
context of the expression in question, in particular variable
bindings, macro definitions, and the use of eval.

However, if the meaning of an expression may be altered,
it is often possible to increase type safety or simplicity.
Consider for example the following potential replacements
of (and (<= 0 i) (< i n)):

(and (<=? real-compare 0 i) (<? real-compare i n))

(<=/<? real-compare 0 i n) ; always compares n

(<=/<? integer-compare 0 i n) ; only integer i, n

(<=/<? 0 i n) ; uses default-compare

Only the first alternative is equivalent to the original ex-
pression, but the other alternatives might be useful, too,
depending on the goal.

Why be so tight with types?

Most procedures and macros in this SRFI are required to
signal an error if an argument is not according to the type
specified, in particular comparison values must be exact
integer in {−1, 0, 1} at all times. Alternatively, we could
have specified that procedures and macros accept values as
general as makes sense.

We believe that being tight on types at this fundamen-
tal level of a language pays off quickly. In particular, this
will simplify debugging. Moreover, static analysis of a pro-
gram will recognize more variables of a known type, which
allows for more unboxed values and tighter compiled code.
(Clearly, at the time of this writing this is speculative.)

Is there a performance penalty for this SRFI?

Yes and no.

The focus of the reference implementation is correctness
and portability; performance will very likely suffer due to
the overhead of internal procedure calls and type-checking.

But as the word “SRFI” suggests, this document is a “re-
quest for implementation,” meaning we would love to see
this SRFI being implemented efficiently by the implemen-
tation experts of particular Scheme systems. In practice,
this means that most of the operations defined here, if not
all, are supported natively.

In this case, there is no performance penalty for using the
mechanisms of this SRFI—using this SRFI might even be
faster due to explicit 3-way branching and better typing.
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Why are there optional leading arguments?

Some operations have an optional first argument. This is
in contrast to common practice in Scheme to put optional
arguments after mandatory arguments.

The leading optional argument is always the argument
compare, representing the total order to be used. If it is
missing default-compare is used.

In the cases where we have chosen to make compare op-
tional it is for the sake of brevity, e.g. in (<? x y) in-
stead of enforcing (<? default-compare x y). Although
an option introduces potential for confusion (e.g. (<? x y
z) vs. (</<? x y z)), we consider it an important fea-
ture for interactive use and convenient programming (e.g.
in (do ((i 0 (+ i 1))) ((=? i n)))).

Given our decision for optional compare, the question arises
how to pass the option. In the absence of other widely
accepted mechanisms for options, we can only vary the
length of the argument list. For historical reasons—before
case-lambda of SRFI 16— optional arguments are passed
at the end of the argument list for simplified parsing. On
the other hand, (<? compare x y) is more consistent with
the rest of the SRFI than (<? x y compare).

Unfortunately, any particular choice here is a com-
promise, and it is also controversial. (Please
refer to the discussion archive for details, in
particular http://srfi.schemers.org/srfi-67/mail-
archive/msg00051.html.) We have chosen for notational
convenience in the common case (optional compare)
and for consistency within this SRFI (leading optional
argument).

Why chain<? etc. and not a predicate parameter?

This SRFI specifies the five chain predicates chain=?,
chain<?, chain>?, chain<=?, and chain>=?. An al-
terative is to define a single chain predicate that has
the ordering as a parameter. (Refer to the discussion
archive starting with http://srfi.schemers.org/srfi-67/mail-
archive/msg00012.html.)

The reason we have chosen for five chain predicates is that
we use compare procedures to represent orders, not pred-
icate procedures. There are five possible order relations
predicates for which a chain test makes sense. (The sixth,
not=?, is not not transitive and hence requires pairwise
testing.) The five chain tests are clearly defined and can
be implemented efficiently, their main overhead being the
call to the compare procedure.

Why not more higher-order procedures?

In this SRFI min-compare accepts a compare procedure as
a first mandatory argument, applying the minimum oper-
ation to the list of all other arguments. An alternative is

to have min-compare accept only the compare procedure
(possibly optional) and returing a procedure computing the
minimum of all its arguments (with respect to the compare
procedure.) In a similar fashion other operations can spec-
ified as higher-order procedures.

We have avoided higher-order procedures in this SRFI for
simplicity and efficiency. As said repeatedly, compare pro-
cedures are the main vehicle to transport total orders from
the code site definine an order to the code site using an
order. Moreover, most operations made available through
this SRFI appear rather infrequently in programs, so ei-
ther way there is little to be gained. Finally, dealing with
higher-order procedures often involves writing more paren-
theses and the more simple-minded Scheme systems will
create many short-lived closures.

Why do <? etc. have so many options?

The procedures =?, <? etc. accept an optional compare
procedure but also two optional arguments to compare.
This could be made simpler by not specifying some of the
cases, or by specifying different procedures for the different
functions.

The operations <? etc. are the primary mechanism for
using compare procedures. As such they should be versatile
and concise.

Our original design had two mandatory arguments for
objects to compare and an optional argument for the
compare procedure, i.e. it provides a parametric com-
parison (<? compare x y) of two objects. Amir Livne
Bar-On then raised the issue of having better support
for a higher-order style of programming, i.e. ((<?
compare) x y). (Refer to http://srfi.schemers.org/srfi-
67/mail-archive/msg00012.html.)

However, in Scheme the higher-order style is less convenient
than it is in curried programming languages like Haskell or
ML. In practice this manifests itself as follows: The most
basic and frequent case of comparing atomic objects with
respect to the default ordering would read ((<=?) x y),
which is just two parentheses short of optimal.

Fortunately, Dave Mason proposed a syntax for resolving
the apparent alternative parametric test vs. higher or-
der style. (Refer to http://srfi.schemers.org/srfi-67/mail-
archive/msg00014.html.) By combining both functionali-
ties into a single procedure, the user can choose the style
at any moment.

7. Related work

The use of compare procedures is not new; defining control
structures (if3, select-compare etc.) for dealing with
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them efficiently, however, seems to be new (at least we
have not seen it before).

Total ordering in R5RS is represented by typed or-
der predicates, such as <=, char<=? etc. Although a
“less or equal”-predicate is sufficient to define a total or-
der, R5RS defines a complete set of compare predicates
(that is =, <, >, ≤, and ≤) for the sake of convenience
and readability. There are 25 procedures related to to-
tal orders in R5RS . These are named (=|<|>|<=|>=) and
(char|string)[-ci](=|<|>|<=|>=)?.
The traditional approach in Scheme to equivalence (“Are
two values treated as equal?”) is the fixed set of predicates
eq?, eqv?, and equal?. Historically, this approach was
motivated by the desire to compare only pointers and avoid
structural recursion. This SRFI provides the generalization
to arbitrary equivalence relations, provided the equivalence
classes are totally ordered.

The Ruby programming language [4] provides a method
<=> which is a compare procedure in the sense of this SRFI.
By (re-)defining this method a total order can be defined
for the instances of a class, when compared against other
objects. All 2-way comparisons are based on <=>, but in
Ruby essentially every method can be overloaded.

In the Haskell 98 programming language [6] order predi-
cates and compare functions coexist. The type Ordering
[6, Sect 6.1.8] is an enumeration of the three symbolic con-
stants LT, EQ, GT. The type class Ord [6, Sect 6.3.2] asserts
the presence of a total order for a type, provided the type
class Eq [6, Sect 6.3.1] also asserts the presence of an equiv-
alence. Since the default definition of the method compare
is in terms of the methods == and <=, and vice versa, it
can be chosen easily how to provide the total order with-
out affecting its pattern of use.

The C function strcmp [7] of the “string.h”-library acts as
a compare procedure in the sense of this SRFI, although
it is specified to return an integer of which only the sign
matters. Python [5] has a built-in function cmp which is a
compare procedure in the sense of this SRFI.

In SRFI-32 (Sort libraries) [13] the total orders used for
sorting are represented by a “less than” procedure. The
discussion archive [13] contains a short discussion thread
on the use of 3-value comparisons under the aspect whether
they can be used to improve the sorting algorithm itself.

In the Galore.plt library of data structures for PLT
Scheme, total orders are represented by the signa-
ture definition (define-signature order^ (elm= elm<
elm<=)).

8. Reference implementation

The reference implementation is contained in the file

http://srfi.schemers.org/srfi-67/
implementation/compare.scm;

it is implemented in R5RS (including hygienic macros)
together with SRFI-16 (case-lambda) [9] SRFI-23 (error)
[11] SRFI-27 (random-integer) [12].

Test code and examples are collected in

http://srfi.schemers.org/srfi-67/
implementation/examples.scm;

it requires SRFI-42 (comprehensions) [14]. The reference
implementation and the testing code have been developed
and are known to run under PLT/DrScheme 208p1 [15],
Scheme 48 1.1 [16], and Chicken 1.70 [17].

Code defining the order predicates of R5RS in terms of
this SRFI is in the file

http://srfi.schemers.org/srfi-67/
implementation/r5rs-to-srfi.scm.

REFERENCES

[1] E. Weisstein: Totally Ordered Set,
Mathworld at Wolfram Research.
mathworld.wolfram.com/TotallyOrderedSet.html

[2] E. Weisstein: Equivalence Relation,
Mathworld at Wolfram Research.
mathworld.wolfram.com/EquivalenceRelation.html

[3] R. Kelsey, W. Clinger, J. Rees (eds.): Revised5 Report
on the Algorithmic Language Scheme,
Higher-Order and Symbolic Computation, Vol. 11,
No. 1, August, 1998.
www.schemers.org/Documents/Standards/R5RS/

[4] Y. Matsumoto: Programming Ruby. The Pragmatic
Programmer’s Guide.
www.ruby-doc.org/docs/ProgrammingRuby/

[5] G. van Rossum, F. L. Drake, Jr., (ed.): Python Library
Reference. Release 2.4 of 30 November 2004. Section
2.1 “built-in functions”. Python Software Foundation.
http://docs.python.org/lib/lib.html

[6] S. Peyton Jones (ed.): Haskell 98 Language and Li-
braries The Revised Report, December 2002.
http://www.haskell.org/definition/

[7] ANSI-C ISO/IEC 9899:1999, published 1 December.
http://www.open-std.org/jtc1/sc22/wg14/www/
standards

[8] J. A. Søgaard: Data Structures Galore for PLT
Scheme.
http://planet.plt-scheme.org:80/207.1/docs/
soegaard/galore.plt/1/1/doc.txt



16 SRFI 67: Compare Procedures

[9] L. T. Hansen: SRFI 16 Syntax for procedures of vari-
able arity.
http://srfi.schemers.org/srfi-16/

[10] R. Kelsey: SRFI 9 Defining record types.
http://srfi.schemers.org/srfi-9/

[11] S. Houben: SRFI 23 Error reporting mechanism.
http://srfi.schemers.org/srfi-23/

[12] S. Egner: SRFI 27 Sources of random bits.
http://srfi.schemers.org/srfi-27/

[13] O. Shivers: SRFI 32 Sort libraries. Section “Or-
dering, comparison functions & stability” and mail-
archive msg000{23,24,33}.html. SRFI has been with-
drawn July 17, 2003.
http://srfi.schemers.org/srfi-32/

[14] S. Egner: SRFI 42 Eager comprehensions.
http://srfi.schemers.org/srfi-42/

[15] PLT Scheme.
http://www.plt-scheme.org/

[16] R. Kelsey, J. Rees: Scheme48, version 1.1.
http://s48.org/

[17] Chicken, version 1.70.
www.call-with-current-continuation.org.

Copyright (c) 2005 Sebastian Egner and Jens Axel
Søgaard.

Permission is hereby granted, free of charge, to any per-
son obtaining a copy of this software and associated doc-
umentation files (the “Software”), to deal in the Software
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ALPHABETIC INDEX

The principal entry for each term, procedure, or keyword is
listed first, separated from the other entries by a semicolon.

</<=? 6
</<? 6
<=/<=? 6
<=/<? 6
<=? 6
<? 6
=? 6
>/>=? 6
>/>? 6
>=/>=? 6
>=/>? 6
>=? 6
>? 6

boolean-compare 3

chain<=? 6
chain<? 6
chain=? 6
chain>=? 6
chain>? 6
char-compare 3
char-compare-ci 3
compare-by< 7
compare-by<= 7
compare-by=/< 7
compare-by=/> 7
compare-by> 7
compare-by>= 7
complex-compare 3
cond-compare 5

debug-compare 7
default-compare 4

if-not=? 6
if3 5
if<=? 5
if<? 5
if=? 5
if>=? 6
if>? 5
integer-compare 3

kth-largest 7

list-compare 3
list-compare-as-vector 4

max-compare 7

min-compare 7

not=? 6
number-compare 3

pair-compare 4
pair-compare-car 4
pair-compare-cdr 4
pairwise-not=? 6

rational-compare 3
real-compare 3
refine-compare 4

select-compare 5
string-compare 3
string-compare-ci 3
symbol-compare 3

vector-compare 3
vector-compare-as-list 3


