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Streams, sometimes called lazy lists, are a sequential data 
structure containing elements computed only on demand.  
A stream is either null or is a pair with a stream in its cdr.  
Since elements of a stream are computed only when ac-
cessed, streams can be infinite.  Once computed, the value 
of a stream element is cached in case it is needed again. 

Streams without memoization were first described by 
Peter Landin in 1965.  Memoization became accepted as 
an essential feature of streams about a decade later.  To-
day, streams are the signature data type of functional pro-
gramming languages such as Haskell. 

This Scheme Request for Implementation describes two 
libraries for operating on streams: a canonical set of 
stream primitives and a set of procedures and syntax de-
rived from those primitives that permits convenient ex-
pression of stream operations.  They rely on facilities pro-
vided by R6RS, including libraries, records, and error 
reporting.  To load both stream libraries, say: 
(import (streams)) 

1. Streams 
Harold Abelson and Gerald Jay Sussman discuss streams 
at length, giving a strong justification for their use.  The 
streams they provide are represented as a cons pair with 
a promise to return a stream in its cdr; for instance, a 
stream with elements the first three counting numbers is 
represented conceptually as (cons 1 (delay (cons 
2 (delay (cons 3 (delay '())))))).  Phi-
lip Wadler, Walid Taha and David MacQueen describe 
such streams as odd because, regardless of their length, 
the parity of the number of constructors (delay, cons, 
'()) in the stream is odd. 

The streams provided here differ from those of Abelson 
and Sussman, being represented as promises that contain 
a cons pair with a stream in its cdr; for instance, the 
stream with elements the first three counting numbers is 
represented conceptually as (delay (cons 1 (de-
lay (cons 2 (delay (cons 3 (delay 
'()))))))); this is an even stream because the parity 
of the number of constructors in the stream is even. 

Even streams are more complex than odd streams in both 
definition and usage, but they offer a strong benefit: they 
fix the off-by-one error of odd streams.  Wadler, Taha and 

MacQueen show, for instance, that an expression like 
(stream->list 4 (stream-map / (stream-
from 4 -1))) evaluates to (1/4 1/3 1/2 1) 
using even streams but fails with a divide-by-zero error 
using odd streams, because the next element in the 
stream, which will be 1/0, is evaluated before it is ac-
cessed.  This extra bit of laziness is not just an interesting 
oddity; it is vitally critical in many circumstances, as will 
become apparent below. 

When used effectively, the primary benefit of streams is 
improved modularity.  Consider a process that takes a 
sequence of items, operating on each in turn.  If the opera-
tion is complex, it may be useful to split it into two or 
more procedures in which the partially-processed se-
quence is an intermediate result.  If that sequence is stored 
as a list, the entire intermediate result must reside in 
memory all at once; however, if the intermediate result is 
stored as a stream, it can be generated piecemeal, using 
only as much memory as required by a single item.  This 
leads to a programming style that uses many small opera-
tors, each operating on the sequence of items as a whole, 
similar to a pipeline of unix commands. 

In addition to improved modularity, streams permit a 
clear exposition of backtracking algorithms using the 
“stream of successes” technique, and they can be used to 
model generators and co-routines.  The implicit memoiza-
tion of streams makes them useful for building persistent 
data structures, and the laziness of streams permits some 
multi-pass algorithms to be executed in a single pass.  
Savvy programmers use streams to enhance their pro-
grams in countless ways. 

There is an obvious space/time trade-off between lists and 
streams; lists take more space, but streams take more time 
(to see why, look at all the type conversions in the imple-
mentation of the stream primitives).  Streams are appro-
priate when the sequence is truly infinite, when the space 
savings are needed, or when they offer a clearer exposi-
tion of the algorithms that operate on the sequence. 

2. The (streams primitive) library 
The (streams primitive) library provides two 
mutually-recursive abstract data types:  An object of the 
stream abstract data type is a promise that, when forced, 
is either stream-null or is an object of type 
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stream-pair.  An object of the stream-pair ab-
stract data type contains a stream-car and a 
stream-cdr, which must be a stream.  The essential 
feature of streams is the systematic suspensions of the 
recursive promises between the two data types. 
α stream 
    :: (promise stream-null) 
    |  (promise (α stream-pair)) 

α stream-pair 
    :: (promise α) × (promise (α stream)) 

The object stored in the stream-car of a stream-
pair is a promise that is forced the first time the 
stream-car is accessed; its value is cached in case it is 
needed again.  The object may have any type, and differ-
ent stream elements may have different types.  If the 
stream-car is never accessed, the object stored there 
is never evaluated.  Likewise, the stream-cdr is a 
promise to return a stream, and is only forced on demand. 

This library provides eight operators: constructors for 
stream-null and stream-pairs, type recognizers 
for streams and the two kinds of streams, accessors for 
both fields of a stream-pair, and a lambda that 
creates procedures that return streams. 

stream-null constructor 
Stream-null is a promise that, when forced, is a sin-
gle object, distinguishable from all other objects, that 
represents the null stream.  Stream-null is immutable 
and unique. 

(stream-cons object stream) constructor 
Stream-cons is a macro that accepts an object and a 
stream and creates a newly-allocated stream containing 
a promise that, when forced, is a stream-pair with the 
object in its stream-car and the stream in its 
stream-cdr.  Stream-cons must be syntactic, not 
procedural, because neither object nor stream is evaluated 
when stream-cons is called.  Since stream is not eva-
luated, when the stream-pair is created, it is not an error to 
call stream-cons with a stream that is not of type 
stream; however, doing so will cause an error later 
when the stream-cdr of the stream-pair is ac-
cessed.  Once created, a stream-pair is immutable; 
there is no stream-set-car! or stream-set-
cdr! that modifies an existing stream-pair.  There is 
no dotted-pair or improper stream as with lists. 

(stream? object) recognizer 
Stream? is a procedure that takes an object and returns 
#t if the object is a stream and #f otherwise.  If object is 
a stream, stream? does not force its promise.  If 
(stream? obj) is #t, then one of (stream-null? 
obj) and (stream-pair? obj) will be #t and the 
other will be #f; if (stream? obj) is #f, both 

(stream-null? obj) and (stream-pair? 
obj) will be #f.  

(stream-null? object) recognizer 
Stream-null? is a procedure that takes an object and 
returns #t if the object is the distinguished null stream 
and #f otherwise.  If object is a stream, stream-null? 
must force its promise in order to distinguish stream-
null from stream-pair. 

(stream-pair? object) recognizer 
Stream-pair? is a procedure that takes an object and 
returns #t if the object is a stream-pair constructed 
by stream-cons and #f otherwise.  If object is a 
stream, stream-pair? must force its promise in order 
to distinguish stream-null from stream-pair. 

(stream-car stream) accessor 
Stream-car is a procedure that takes a stream and re-
turns the object stored in the stream-car of the stream.  
Stream-car signals an error if the object passed to it is 
not a stream-pair.  Calling stream-car causes the 
object stored there to be evaluated if it has not yet been; 
the object’s value is cached in case it is needed again. 

(stream-cdr stream) accessor  
Stream-cdr is a procedure that takes a stream and re-
turns the stream stored in the stream-cdr of the 
stream.  Stream-cdr signals an error if the object 
passed to it is not a stream-pair.  Calling stream-
cdr does not force the promise containing the stream 
stored in the stream-cdr of the stream. 

(stream-lambda args body) lambda 
Stream-lambda creates a procedure that returns a 
promise to evaluate the body of the procedure.  The last 
body expression to be evaluated must yield a stream.  As 
with normal lambda, args may be a single variable 
name, in which case all the formal arguments are col-
lected into a single list, or a list of variable names, which 
may be null if there are no arguments, proper if there are 
an exact number of arguments, or dotted if a fixed number 
of arguments is to be followed by zero or more arguments 
collected into a list.  Body must contain at least one ex-
pression, and may contain internal definitions preceding 
any expressions to be evaluated. 
(define strm123 
  (stream-cons 1 
    (stream-cons 2 
      (stream-cons 3 
        stream-null)))) 

(stream-car strm123) ⇒ 1 
(stream-car (stream-cdr strm123) ⇒ 2 

(stream-pair? 
  (stream-cdr 
    (stream-cons (/ 1 0) stream-null))) ⇒ #f 
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(stream? (list 1 2 3)) ⇒ #f 

(define iter 
  (stream-lambda (f x) 
    (stream-cons x (iter f (f x))))) 

(define nats (iter (lambda (x) (+ x 1)) 0)) 

(stream-car (stream-cdr nats)) ⇒ 1 

(define stream-add 
  (stream-lambda (s1 s2) 
    (stream-cons 
      (+ (stream-car s1) (stream-car s2)) 
      (stream-add (stream-cdr s1) 
                  (stream-cdr s2))))) 

(define evens (stream-add nats nats)) 

(stream-car evens) ⇒ 0 

(stream-car (stream-cdr evens)) ⇒ 2 

(stream-car (stream-cdr (stream-cdr evens))) ⇒ 4 

3. The (streams derived) library 
The (streams derived) library provides useful pro-
cedures and syntax that depend on the primitives defined 
above.  In the operator templates given below, an ellipsis 
... indicates zero or more repetitions of the preceding 
subexpression and square brackets […] indicate optional 
elements.  In the type annotations given below, square 
brackets […] refer to lists, curly braces {…} refer to 
streams, and nat refers to exact non-negative integers. 

(define-stream (name args) body) syntax 
Define-stream creates a procedure that returns a 
stream, and may appear anywhere a normal define may 
appear, including as an internal definition, and may have 
internal definitions of its own, including other define-
streams.  The defined procedure takes arguments in the 
same way as stream-lambda.  Define-stream is 
syntactic sugar on stream-lambda; see also stream-
let, which is also a sugaring of stream-lambda. 

A simple version of stream-map that takes only a sin-
gle input stream calls itself recursively: 
(define-stream (stream-map proc strm) 
  (if (stream-null? strm) 
      stream-null 
      (stream-cons 
        (proc (stream-car strm)) 
        (stream-map proc (stream-cdr strm)))))) 

(list->stream list-of-objects) procedure 
[α] → {α} 
List->stream takes a list of objects and returns a 
newly-allocated stream containing in its elements the ob-
jects in the list.  Since the objects are given in a list, they 
are evaluated when list->stream is called, before the 
stream is created.  If the list of objects is null, as in 

(list->stream '()), the null stream is returned.  
See also stream. 
(define strm123 (list->stream '(1 2 3))) 

; fails with divide-by-zero error 
(define s (list->stream (list 1 (/ 1 0) -1))) 

(port->stream [port]) procedure 
port → {char} 
Port->stream takes a port and returns a newly-
allocated stream containing in its elements the characters 
on the port.  If port is not given it defaults to the current 
input port.  The returned stream has finite length and is 
terminated by stream-null. 

It looks like one use of port->stream would be this: 
(define s ;wrong! 
  (with-input-from-file filename 
    (lambda () (port->stream)))) 

But that fails, because with-input-from-file is 
eager, and closes the input port prematurely, before the 
first character is read.  To read a file into a stream, say: 
(define-stream (file->stream filename) 
  (let ((p (open-input-file filename))) 
    (stream-let loop ((c (read-char p))) 
      (if (eof-object? c) 
          (begin (close-input-port p) 
                 stream-null) 
          (stream-cons c 
            (loop (read-char p))))))) 

(stream object ...) syntax 
Stream is syntax that takes zero or more objects and 
creates a newly-allocated stream containing in its ele-
ments the objects, in order.  Since stream is syntactic, 
the objects are evaluated when they are accessed, not 
when the stream is created.  If no objects are given, as in 
(stream), the null stream is returned.  See also 
list->stream. 
(define strm123 (stream 1 2 3)) 

; (/ 1 0) not evaluated when stream is created 
(define s (stream 1 (/ 1 0) -1)) 

(stream->list [n] stream) procedure 
nat × {α} → [α] 
Stream->list takes a natural number n and a stream 
and returns a newly-allocated list containing in its ele-
ments the first n items in the stream. If the stream has less 
than n items all the items in the stream will be included in 
the returned list.  If n is not given it defaults to infinity, 
which means that unless stream is finite 
stream->list will never return. 
(stream->list 10 
  (stream-map (lambda (x) (* x x)) 
    (stream-from 0))) 
  ⇒ (0 1 4 9 16 25 36 49 64 81) 
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(stream-append stream ...) procedure  
{α} ... → {α} 
Stream-append returns a newly-allocated stream con-
taining in its elements those elements contained in its in-
put streams, in order of input.  If any of the input streams 
is infinite, no elements of any of the succeeding input 
streams will appear in the output stream; thus, if x is infi-
nite, (stream-append x y) ≡ x.  See also 
stream-concat. 

Quicksort can be used to sort a stream, using stream-
append to build the output; the sort is lazy; so if only the 
beginning of the output stream is needed, the end of the 
stream is never sorted. 
(define-stream (qsort lt? strm) 
  (if (stream-null? strm) 
      stream-null 
      (let ((x (stream-car strm)) 
            (xs (stream-cdr strm))) 
        (stream-append 
          (qsort lt? 
            (stream-filter 
              (lambda (u) (lt? u x)) 
              xs)) 
          (stream x) 
          (qsort lt? 
            (stream-filter 
              (lambda (u) (not (lt? u x))) 
              xs)))))) 

When used in tail position as in qsort, stream-
append does not suffer the poor performance of ap-
pend on lists.  The list version of append requires re-
traversal of all its list arguments except the last each time 
it is called.  But stream-append is different.  Each 
recursive call to stream-append is suspended; when it 
is later forced, the preceding elements of the result have 
already been traversed, so tail-recursive loops that pro-
duce streams are efficient even when each element is ap-
pended to the end of the result stream.  This also implies 
that during traversal of the result only one promise needs 
to be kept in memory at a time. 

(stream-concat stream) procedure  
{{α}} ... → {α} 
Stream-concat takes a stream consisting of one or 
more streams and returns a newly-allocated stream con-
taining all the elements of the input streams.  If any of the 
streams in the input stream is infinite, any remaining 
streams in the input stream will never appear in the output 
stream.  See also stream-append. 
(stream->list 
  (stream-concat 
    (stream 
      (stream 1 2) (stream) (stream 3 2 1)))) 
  ⇒ (1 2 3 2 1) 

The permutations of a finite stream can be determined by 
interleaving each element of the stream in all possible 
positions within each permutation of the other elements of 

the stream.  Interleave returns a stream of streams 
with x inserted in each possible position of yy: 
(define-stream (interleave x yy) 
  (stream-match yy 
    (() (stream (stream x))) 
    ((y . ys) 
      (stream-append 
        (stream (stream-cons x yy)) 
        (stream-map 
          (lambda (z) (stream-cons y z)) 
          (interleave x ys)))))) 

(define-stream (perms xs) 
  (if (stream-null? xs) 
      (stream (stream)) 
      (stream-concat 
        (stream-map 
          (lambda (ys) 
            (interleave (stream-car xs) ys)) 
          (perms (stream-cdr xs)))))) 

(stream-constant object ...) procedure  
α ... → {α} 
Stream-constant takes one or more objects and re-
turns a newly-allocated stream containing in its elements 
the objects, repeating the objects in succession forever. 

(stream-constant 1) ⇒ 1 1 1 ... 

(stream-constant #t #f) ⇒ #t #f #t #f #t #f ... 

(stream-drop n stream) procedure  
nat × {α} → {α} 
Stream-drop returns the suffix of the input stream that 
starts at the next element after the first n elements.  The 
output stream shares structure with the input stream; thus, 
promises forced in one instance of the stream are also 
forced in the other instance of the stream.  If the input 
stream has less than n elements, stream-drop returns 
the null stream.  See also stream-take. 
(define (stream-split n strm) 
  (values (stream-take n strm) 
          (stream-drop n strm))) 

(stream-drop-while pred? stream) procedure  
(α → boolean) × {α} → {α} 
Stream-drop-while returns the suffix of the input 
stream that starts at the first element x for which (pred? 
x) is #f.  The output stream shares structure with the 
input stream.  See also stream-take-while. 

Stream-unique creates a new stream that retains only 
the first of any sub-sequences of repeated elements. 
(define-stream (stream-unique eql? strm) 
  (if (stream-null? strm) 
      stream-null 
      (stream-cons (stream-car strm) 
        (stream-unique eql? 
          (stream-drop-while 
            (lambda (x) 
              (eql? (stream-car strm) x)) 
            strm))))) 
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(stream-filter pred? stream) procedure  
(α → boolean) × {α} → {α} 
Stream-filter returns a newly-allocated stream that 
contains only those elements x of the input stream for 
which (pred? x) is non-#f. 
(stream-filter odd? (stream-from 0)) 
   ⇒ 1 3 5 7 9 ... 

(stream-fold proc base stream) procedure  
(α × β → α) × α × {β} → α 
Stream-fold applies a binary procedure to base and 
the first element of stream to compute a new base, then 
applies the procedure to the new base and the next ele-
ment of stream to compute a succeeding base, and so on, 
accumulating a value that is finally returned as the value 
of stream-fold when the end of the stream is reached.  
Stream must be finite, or stream-fold will enter an 
infinite loop.  See also stream-scan, which is similar 
to stream-fold, but useful for infinite streams.  For 
readers familiar with other functional languages, this is a 
left-fold; there is no corresponding right-fold, since right-
fold relies on finite streams that are fully-evaluated, at 
which time they may as well be converted to a list. 

Stream-fold is often used to summarize a stream in a 
single value, for instance, to compute the maximum ele-
ment of a stream. 
(define (stream-maximum lt? strm) 
  (stream-fold 
    (lambda (x y) (if (lt? x y) y x)) 
    (stream-car strm) 
    (stream-cdr strm))) 

Sometimes, it is useful to have stream-fold defined 
only on non-null streams: 
(define (stream-fold-one proc strm) 
  (stream-fold proc 
    (stream-car strm) 
    (stream-cdr strm))) 

Stream-minimum can then be defined as: 
(define (stream-minimum lt? strm) 
  (stream-fold-one 
    (lambda (x y) (if (lt? x y) x y)) 
    strm)) 

Stream-fold can also be used to build a stream: 
(define-stream (isort lt? strm) 
    (define-stream (insert strm x) 
      (stream-match strm 
        (() (stream x)) 
        ((y . ys) 
          (if (lt? y x) 
              (stream-cons y (insert ys x)) 
              (stream-cons x strm))))) 
    (stream-fold insert stream-null strm)) 

(stream-for-each proc stream ...) procedure 
(α × β × ...) × {α} × {β} ... 
Stream-for-each applies a procedure element-wise 
to corresponding elements of the input streams for its 

side-effects; it returns nothing.  Stream-for-each 
stops as soon as any of its input streams is exhausted. 

The following procedure displays the contents of a file: 
(define (display-file filename) 
  (stream-for-each display 
    (file->stream filename))) 

(stream-from first [step]) procedure  
number × number → {number} 
Stream-from creates a newly-allocated stream that 
contains first as its first element and increments each suc-
ceeding element by step.  If step is not given it defaults to 
1.  First and step may be of any numeric type.  Stream-
from is frequently useful as a generator in stream-of 
expressions.  See also stream-range for a similar pro-
cedure that creates finite streams.  

Stream-from could be implemented as (stream-
iterate (lambda (x) (+ x step)) first). 

(define nats (stream-from 0)) ⇒ 0 1 2 ... 

(define odds (stream-from 1 2)) ⇒ 1 3 5 ... 

(stream-iterate proc base) procedure  
(α → α) × α → {α} 
Stream-iterate creates a newly-allocated stream 
containing base in its first element and applies proc to 
each element in turn to determine the succeeding element.  
See also stream-unfold and stream-unfolds. 
(stream-iterate (lambda (x) (+ x 1)) 0) 
  ⇒ 0 1 2 3 4 ... 

(stream-iterate (lambda (x) (* x 2)) 1)  
  ⇒ 1 2 4 8 16 ... 

Given a seed between 0 and 232, exclusive, the following 
expression creates a stream of pseudo-random integers 
between 0 and 232, exclusive, beginning with seed, using 
the method described by Stephen Park and Keith Miller: 
(stream-iterate 
  (lambda (x) (modulo (* x 16807) 2147483647)) 

  seed) 

Successive values of the continued fraction shown below 
approach the value of the “golden ratio” φ ≈ 1.618: 

...
11

11

11

11

11

11

+
+

+
+

+
+  

The fractions can be calculated by the stream 
(stream-iterate (lambda (x) (+ 1 (/ x))) 1) 
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(stream-length stream) procedure  
{α} → nat 
Stream-length takes an input stream and returns the 
number of elements in the stream; it does not evaluate its 
elements.  Stream-length may only be used on finite 
streams; it enters an infinite loop with infinite streams. 

(stream-length strm123) ⇒ 3 

(stream-let tag ((var expr) ...) body)syntax 
Stream-let creates a local scope that binds each vari-
able to the value of its corresponding expression.  It addi-
tionally binds tag to a procedure which takes the bound 
variables as arguments and body as its defining expres-
sions, binding the tag with stream-lambda. Tag is in 
scope within body, and may be called recursively.  When 
the expanded expression defined by the stream-let is 
evaluated, stream-let evaluates the expressions in its 
body in an environment containing the newly-bound va-
riables, returning the value of the last expression eva-
luated, which must yield a stream. 

Stream-let provides syntactic sugar on stream-
lambda, in the same manner as normal let provides 
syntactic sugar on normal lambda.  However, unlike 
normal let, the tag is required, not optional, because 
unnamed stream-let is meaningless.  

Stream-member returns the first stream-pair of the 
input strm with a stream-car x that satisfies (eql? 
obj x), or the null stream if x is not present in strm. 
(define-stream (stream-member eql? obj strm) 
  (stream-let loop ((strm strm)) 
    (cond ((stream-null? strm) strm) 
          ((eql? obj (stream-car strm)) strm) 
          (else (loop (stream-cdr strm)))))) 

(stream-map proc stream ...) procedure  
(α × β ... → ω) × {α} × {β} ... → {ω} 
Stream-map applies a procedure element-wise to cor-
responding elements of the input streams, returning a 
newly-allocated stream containing elements that are the 
results of those procedure applications.  The output 
stream has as many elements as the minimum-length in-
put stream, and may be infinite. 
(define (square x) (* x x)) 

(stream-map square (stream 9 3)) ⇒ 81 9 

(define (sigma f m n) 
  (stream-fold + 0 
    (stream-map f (stream-range m (+ n 1))))) 

(sigma square 1 100) ⇒ 338350 

In some functional languages, stream-map takes only a 
single input stream, and stream-zipwith provides a 
companion function that takes multiple input streams. 

(stream-match stream clause ...) syntax  
Stream-match provides the syntax of pattern-matching 
for streams.  The input stream is an expression that eva-
luates to a stream.  Clauses are of the form (pattern 
[fender] expr), consisting of a pattern that matches a 
stream of a particular shape, an optional fender that must 
succeed if the pattern is to match, and an expression that 
is evaluated if the pattern matches.  There are four types 
of patterns: 

• () — Matches the null stream. 

• (pat0 pat1 ...) — Matches a finite stream with 
length exactly equal to the number of pattern elements. 

• (pat0 pat1 ... . patrest) — Matches an infinite 
stream, or a finite stream with length at least as great as 
the number of pattern elements before the literal dot. 

• pat — Matches an entire stream.  Should always ap-
pear last in the list of clauses; it’s not an error to appear 
elsewhere, but subsequent clauses could never match. 

Each pattern element pati may be either: 

• An identifier — Matches any stream element.  Addi-
tionally, the value of the stream element is bound to the 
variable named by the identifier, which is in scope in the 
fender and expression of the corresponding clause.  Each 
identifier in a single pattern must be unique. 

• A literal underscore — Matches any stream element, 
but creates no bindings. 

The patterns are tested in order, left-to-right, until a 
matching pattern is found; if fender is present, it must 
evaluate as non-#f for the match to be successful.  Pat-
tern variables are bound in the corresponding fender and 
expression.  Once the matching pattern is found, the cor-
responding expression is evaluated and returned as the 
result of the match.  An error is signaled if no pattern 
matches the input stream. 

Stream-match is often used to distinguish null streams 
from non-null streams, binding head and tail: 
(define (len strm) 
  (stream-match strm 
    (() 0) 
    ((head . tail) (+ 1 (len tail))))) 

Fenders can test the common case where two stream ele-
ments must be identical; the else pattern is an identifier 
bound to the entire stream, not a keyword as in cond. 
(stream-match strm 
  ((x y . _) (equal? x y) 'ok) 
  (else 'error)) 

A more complex example uses two nested matchers to 
match two different stream arguments; (stream-
merge lt? . strms) stably merges two or more 
streams ordered by the lt? predicate: 
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(define-stream (stream-merge lt? . strms) 
  (define-stream (merge xx yy) 
    (stream-match xx (() yy) ((x . xs) 
      (stream-match yy (() xx) ((y . ys) 
        (if (lt? y x) 
            (stream-cons y (merge xx ys)) 
            (stream-cons x (merge xs yy)))))))) 
  (stream-let loop ((strms strms)) 
    (cond ((null? strms) stream-null) 
          ((null? (cdr strms)) (car strms)) 
          (else (merge (car strms) 
                       (apply stream-merge lt? 
                         (cdr strms))))))) 

(stream-of expr clause ...) syntax 
Stream-of provides the syntax of stream comprehen-
sions, which generate streams by means of looping ex-
pressions.  The result is a stream of objects of the type 
returned by expr.  There are four types of clauses: 

• (var in stream-expr) — Loop over the elements 
of stream-expr, in order from the start of the stream, bind-
ing each element of the stream in turn to var.  Stream-
from and stream-range are frequently useful as ge-
nerators for stream-expr. 

• (var is expr) — Bind var to the value obtained by 
evaluating expr. 

• (pred? expr) — Include in the output stream only 
those elements x for which (pred? x) is non-#f. 

The scope of variables bound in the stream comprehen-
sion is the clauses to the right of the binding clause (but 
not the binding clause itself) plus the result expression. 

When two or more generators are present, the loops are 
processed as if they are nested from left to right; that is, 
the rightmost generator varies fastest.  A consequence of 
this is that only the first generator may be infinite and all 
subsequent generators must be finite.  If no generators are 
present, the result of a stream comprehension is a stream 
containing the result expression; thus, (stream-of 1) 
produces a finite stream containing only the element 1. 
(stream-of (* x x) 
  (x in (stream-range 0 10)) 
  (even? x)) 
  ⇒ 0 4 16 36 64 

(stream-of (list a b) 
  (a in (stream-range 1 4)) 
  (b in (stream-range 1 3)))  
  ⇒ (1 1) (1 2) (2 1) (2 2) (3 1) (3 2) 

(stream-of (list i j) 
  (i in (stream-range 1 5)) 
  (j in (stream-range (+ i 1) 5)))  
  ⇒ (1 2) (1 3) (1 4) (2 3) (2 4) (3 4) 

(stream-range first past [step]) procedure  
number × number × number → {number} 
Stream-range creates a newly-allocated stream that 
contains first as its first element and increments each suc-
ceeding element by step.  The stream is finite and ends 

before past, which is not an element of the stream.  If step 
is not given it defaults to 1 if first is less than past and -1 
otherwise.  First, past and step may be of any numeric 
type.  Stream-range is frequently useful as a genera-
tor in stream-of expressions.  See also stream-
from for a similar procedure that creates infinite streams. 

(stream-range 0 10) ⇒ 0 1 2 3 4 5 6 7 8 9 

(stream-range 0 10 2) ⇒ 0 2 4 6 8 

Successive elements of the stream are calculated by add-
ing step to first, so if any of first, past or step are inexact, 
the length of the output stream may differ from (ceil-
ing (- (/ (- past first) step) 1). 

(stream-ref stream n) procedure  
{α} × nat → α 
Stream-ref returns the nth element of stream, count-
ing from zero.  An error is signaled if n is greater than or 
equal to the length of stream.  
(define (fact n) 
  (stream-ref 
    (stream-scan * 1 (stream-from 1)) 
    n)) 

(stream-reverse stream) procedure  
{α} → {α} 
Stream-reverse returns a newly-allocated stream 
containing the elements of the input stream but in reverse 
order.  Stream-reverse may only be used with finite 
streams; it enters an infinite loop with infinite streams.  
Stream-reverse does not force evaluation of the 
elements of the stream. 
> (define s (stream 1 (/ 1 0) -1)) 
> (define r (stream-reverse s)) 
> (stream-ref r 0) 
-1 
> (stream-ref r 2) 
1 
> (stream-ref r 1) 
error: division by zero 

(stream-scan proc base stream) procedure  
(α × β → α) × α × {β} → {α} 
Stream-scan accumulates the partial folds of an input 
stream into a newly-allocated output stream.  The output 
stream is the base followed by (stream-fold proc 
base (stream-take i stream)) for each of the 
first i elements of stream. 
(stream-scan + 0 (stream-from 1)) 
  ⇒ (stream 0 1 3 6 10 15 ...) 

(stream-scan * 1 (stream-from 1)) 
  ⇒ (stream 1 1 2 6 24 120 ...) 

(stream-take n stream) procedure  
nat × {α} → {α} 
Stream-take takes a non-negative integer n and a 
stream and returns a newly-allocated stream containing 
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the first n elements of the input stream.  If the input 
stream has less than n elements, so does the output 
stream.  See also stream-drop. 

Mergesort splits a stream into two equal-length pieces, 
sorts them recursively and merges the results: 
(define-stream (msort lt? strm) 
  (let* ((n (quotient (stream-length strm) 2)) 
         (ts (stream-take n strm)) 
         (ds (stream-drop n strm))) 
    (if (zero? n) 
        strm 
        (stream-merge lt? 
          (msort < ts) (msort < ds))))) 

(stream-take-while pred? stream) procedure  
(α → boolean) × {α} → {α} 
Stream-take-while takes a predicate and a stream 
and returns a newly-allocated stream containing those 
elements x that form the maximal prefix of the input 
stream for which (pred? x) is non-#f.  See also 
stream-drop-while. 
(stream-car 
  (stream-reverse 
    (stream-take-while 
      (lambda (x) (< x 1000)) 
      primes))) ⇒ 997 

(stream-unfold map pred? gen base) procedure 
(α → β) × (α → boolean) × (α → α) × α 
→ {β} 
Stream-unfold is the fundamental recursive stream 
constructor.  It constructs a stream by repeatedly applying 
gen to successive values of base, in the manner of 
stream-iterate, then applying map to each of the 
values so generated, appending each of the mapped values 
to the output stream as long as (pred? base) is non-#f.  
See also stream-iterate and stream-unfolds. 

The expression below creates the finite stream 0 1 4 9 16 
25 36 49 64 81.  Initially the base is 0, which is less 
than 10, so map squares the base and the mapped value 
becomes the first element of the output stream.  Then gen 
increments the base by 1, so it becomes 1; this is less 
than 10, so map squares the new base and 1 becomes 
the second element of the output stream.  And so on, until 
the base becomes 10, when pred? stops the recursion and 
stream-null ends the output stream. 
(stream-unfold 
  (lambda (x) (expt x 2)) ; map 
  (lambda (x) (< x 10))   ; pred? 
  (lambda (x) (+ x 1))    ; gen 
  0)                      ; base 

(stream-unfolds proc seed) procedure  
(α → (values α × β ...)) × α → (values 
{β} ...) 
Stream-unfolds returns n newly-allocated streams 
containing those elements produced by successive calls to 

the generator proc, which takes the current seed as its 
argument and returns n+1 values 

(proc seed) → seed result0 ... resultn-1 

where the returned seed is the input seed to the next call 
to the generator and resulti indicates how to produce the 
next element of the ith result stream: 

• (value) — value is the next car of the result stream 

• #f — no value produced by this iteration of the ge-
nerator proc for the result stream 

• () — the end of the result stream 

It may require multiple calls of proc to produce the next 
element of any particular result stream.  See also 
stream-iterate and stream-unfold. 

Stream-unfolds is especially useful when writing 
expressions that return multiple streams.  For instance, 
(stream-partition pred? strm) is equivalent to 
(values 
  (stream-filter pred? strm) 
  (stream-filter 
    (lambda (x) (not (pred? x))) strm)) 

but only tests pred? once for each element of strm. 
(define (stream-partition pred? strm) 
  (stream-unfolds 
    (lambda (s) 
      (if (stream-null? s) 
          (values s '() '()) 
          (let ((a (stream-car s)) 
                (d (stream-cdr s))) 
            (if (pred? a) 
                (values d (list a) #f) 
                (values d #f (list a)))))) 
    strm))  
(call-with-values 
  (lambda () 
    (stream-partition odd? 
      (stream-range 1 6))) 
  (lambda (odds evens) 
    (list (stream->list odds) 
          (stream->list evens)))) 
  ⇒ ((1 3 5) (2 4)) 

(stream-zip stream ...) procedure  
{α} × {β} × ... → {[α β ...]} 
Stream-zip takes one or more input streams and re-
turns a newly-allocated stream in which each element is a 
list (not a stream) of the corresponding elements of the 
input streams.  The output stream is as long as the shortest 
input stream, if any of the input streams is finite, or is 
infinite if all the input streams are infinite. 

A common use of stream-zip is to add an index to a 
stream, as in (stream-finds eql? obj strm), which 
returns all the zero-based indices in strm at which obj 
appears; (stream-find eql? obj strm) returns the 
first such index, or #f if obj is not in strm. 
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(define-stream (stream-finds eql? obj strm) 
  (stream-of (car x) 
    (x in (stream-zip (stream-from 0) strm)) 
    (eql? obj (cadr x)))) 

(define (stream-find eql? obj strm) 
  (stream-car 
    (stream-append 
      (stream-finds eql? obj strm) 
      (stream #f)))) 

(stream-find char=? #\l 
  (list->stream 
    (string->list "hello"))) ⇒ 2 

(stream-find char=? #\l 
  (list->stream 
    (string->list "goodbye"))) ⇒ #f 

Stream-find is not as inefficient as it looks; although 
it calls stream-finds, which finds all matching indic-
es, the matches are computed lazily, and only the first 
match is needed for stream-find. 

4. Utilities 
Streams, being the signature structured data type of func-
tional programming languages, find useful expression in 
conjunction with higher-order functions.  Some of these 
higher-order functions, and their relationship to streams, 
are described below. 

The identity and constant procedures are frequently useful 
as the recursive base for maps and folds; (identity 
obj) always returns obj, and (const obj) creates a 
procedure that takes any number of arguments and always 
returns the same obj, no matter its arguments: 
(define (identity obj) obj) 

(define (const obj) (lambda x obj)) 

Many of the stream procedures take a unary predicate that 
accepts an element of a stream and returns a boolean.  
Procedure (negate pred?) takes a unary predicate and 
returns a new unary predicate that, when called, returns 
the opposite boolean value as the original predicate. 
(define (negate pred?) 
  (lambda (x) (not (pred? x)))) 

Negate is useful for procedures like stream-take-
while that take a predicate, allowing them to be used in 
the opposite direction from which they were written; for 
instance, with the predicate reversed, stream-take-
while becomes stream-take-until.  Stream-
remove is the opposite of stream-filter: 
(define-stream (stream-remove pred? strm) 
  (stream-filter (negate pred?) strm)) 

A section is a procedure which has been partially applied 
to some of its arguments; for instance, (double x), 
which returns twice its argument, is a partial application 
of the multiply operator to the number 2.  Sections come 
in two kinds: left sections partially apply arguments start-

ing from the left, and right sections partially apply argu-
ments starting from the right.  Procedure (lsec proc 
args ...) takes a procedure and some prefix of its ar-
guments and returns a new procedure in which those ar-
guments are partially applied.  Procedure (rsec proc 
args ...) takes a procedure and some reversed suffix 
of its arguments and returns a new procedure in which 
those arguments are partially applied. 
(define (lsec proc . args) 
  (lambda x (apply proc (append args x)))) 

(define (rsec proc . args) 
  (lambda x (apply proc (reverse 
    (append (reverse args) (reverse x)))))) 

Since most of the stream procedures take a stream as their 
last (right-most) argument, left sections are particularly 
useful in conjunction with streams. 
(define stream-sum (lsec stream-fold + 0)) 

Function composition creates a new function by partially 
applying multiple functions, one after the other.  In the 
simplest case there are only two functions, f and g, com-
posed as ((compose f g) x) ≡ (f (g x)); the 
composition can be bound to create a new function, as in 
(define fg (compose f g)).  Procedure (com-
pose proc ...) takes one or more procedures and 
returns a new procedure that performs the same action as 
the individual procedures would if called in succession. 
(define (compose . fns) 
  (let comp ((fns fns)) 
    (cond 
      ((null? fns) 'error) 
      ((null? (cdr fns)) (car fns)) 
      (else 
        (lambda args 
          (call-with-values 
            (lambda () 
              (apply 
                (comp (cdr fns)) 
                args)) 
            (car fns))))))) 

Compose works with sections to create succinct but 
highly expressive procedure definitions.  The expression 
to compute the squares of the integers from 1 to 10 given 
above at stream-unfold could be written by compos-
ing stream-map, stream-take-while, and 
stream-iterate: 
((compose 
  (lsec stream-map (rsec expt 2)) 
  (lsec stream-take-while (negate (rsec > 10))) 
  (lsec stream-iterate (rsec + 1))) 
 1) 

5. Examples 
The examples below show a few of the myriad ways 
streams can be exploited, as well as a few ways they can 
trip the unwary user.  All the examples are drawn from 
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published sources; it is instructive to compare the Scheme 
versions to the originals in other languages. 

5.1. Infinite streams 
As a simple illustration of infinite streams, consider this 
definition of the natural numbers: 
(define nats 
  (stream-cons 0 
    (stream-map add1 nats))) 

The recursion works because it is offset by one from the 
initial stream-cons.  Another sequence that uses the 
offset trick is this definition of the fibonacci numbers: 
(define fibs 
  (stream-cons 1 
    (stream-cons 1 
      (stream-map + 
        fibs 
        (stream-cdr fibs))))) 

Yet another sequence that uses the same offset trick is the 
Hamming numbers, named for the mathematician and 
computer scientist Richard Hamming, defined as all num-
bers that have no prime factors greater than 5; in other 
words, Hamming numbers are all numbers expressible as 
2i·3j·5k, where i, j and k are non-negative integers.  The 
Hamming sequence starts with 1 2 3 4 5 6 8 9 10 
12 and is computed starting with 1, taking 2, 3 and 5 
times all the previous elements with stream-map, then 
merging sub-streams and eliminating duplicates. 
(define hamming 
  (stream-cons 1 
    (stream-unique = 
      (stream-merge < 
        (stream-map (lsec * 2) hamming) 
        (stream-map (lsec * 3) hamming) 
        (stream-map (lsec * 5) hamming))))) 

It is possible to have an infinite stream of infinite streams.  
Consider the definition of power-table: 
(define power-table 
  (stream-of 
    (stream-of (expt m n) 
      (m in (stream-from 1))) 
      (n in (stream-from 2)))) 

which evaluates to an infinite stream of infinite streams: 
(stream 
  (stream 1 4 9 16 25 ...) 
  (stream 1 8 27 64 125 ...) 
  (stream 1 16 81 256 625 ...) 
  ...) 

But even though it is impossible to display power-
table in its entirety, it is possible to select just part of it: 
(stream->list 10 (stream-ref power-table 1)) 
  ⇒ (1 8 27 64 125 216 343 512 729 1000) 

This example clearly shows that the elements of a stream 
are computed lazily, as they are needed; (stream-ref 
power-table 0) is not computed, even when its suc-

cessor is displayed, since computing it would enter an 
infinite loop. 

Chris Reade shows how to calculate the stream of prime 
numbers according to the sieve of Eratosthenes, using a 
method that eliminates multiples of the sifting base with 
addition rather than division: 
(define primes (let () 
  (define-stream (next base mult strm) 
    (let ((first (stream-car strm)) 
          (rest (stream-cdr strm))) 
      (cond ((< first mult) 
              (stream-cons first 
                (next base mult rest))) 
            ((< mult first) 
              (next base (+ base mult) strm)) 
            (else (next base 
                    (+ base mult) rest))))) 
  (define-stream (sift base strm) 
    (next base (+ base base) strm)) 
  (define-stream (sieve strm) 
    (let ((first (stream-car strm)) 
          (rest (stream-cdr strm))) 
      (stream-cons first 
        (sieve (sift first rest))))) 
  (sieve (stream-from 2)))) 

A final example of infinite streams is a functional pearl 
from Jeremy Gibbons, David Lester and Richard Bird that 
enumerates the positive rational numbers without dupli-
cates: 
(define rats 
  (stream-iterate 
    (lambda (x) 
      (let* ((n (floor x)) (y (- x n))) 
        (/ (- n -1 y)))) 
    1)) 

5.2. Backtracking via the stream of successes 
Philip Wadler describes the stream of successes technique 
that uses streams to perform backtracking search.   The 
basic idea is that each procedure returns a stream of poss-
ible results, so that its caller can decide which result it 
wants; an empty stream signals failure, and causes back-
tracking to a previous choice point.  The stream of suc-
cesses technique is useful because the program is written 
as if to simply enumerate all possible solutions; no back-
tracking is explicit in the code. 

The Eight Queens puzzle, which asks for a placement of 
eight queens on a chessboard so that none of them attack 
any other, is an example of a problem that can be solved 
using the stream of successes technique.  The algorithm is 
to place a queen in the first column of a chessboard; any 
column is satisfactory.  Then a queen is placed in the 
second column, in any position not held in check by the 
queen in the first column.  Then a queen is placed in the 
third column, in any position not held in check by the 
queens in the first two columns.  And so on, until all eight 
queens have been placed.  If at any point there is no legal 
placement for the next queen, backtrack to a different 
legal position for the previous queens, and try again. 
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The chessboard is represented as a stream of length m, 
where there are queens in the first m columns, each posi-
tion in the stream representing the rank on which the 
queen appears in that column.  For example, stream 4 6 1 
5 2 8 3 7 represents the following chessboard: 

        

        

        

        

        

        

        

        

Two queens at column i row j and column m row n check 
each other if their columns i and m are the same, or if 
their rows j and n are the same, or if they are on the same 
diagonal with i + j = m + n or i – j = m – n.  There is no 
need to test the columns, because the placement algorithm 
enforces that they differ, so the check? procedure tests 
if two queens hold each other in check. 
(define (check? i j m n) 
  (or (= j n) 
      (= (+ i j) (+ m n)) 
      (= (- i j) (- m n)))) 

The algorithm walks through the columns, extending po-
sition p by adding a new queen in row n with (stream-
append p (stream n)).  Safe? tests if it is safe to 
do so, using the utility procedure stream-and. 
(define (stream-and strm) 
  (let loop ((strm strm)) 
    (cond ((stream-null? strm) #t) 
          ((not (stream-car strm)) #f) 
          (else (loop (stream-cdr strm)))))) 

(define (safe? p n) 
  (let* ((len (stream-length p)) 
         (m (+ len 1))) 
    (stream-and 
      (stream-of 
        (not (check? (car ij) (cadr ij) m n)) 
          (ij in (stream-zip 
                   (stream-range 1 m) 
                   p)))))) 

Procedure (queens m) returns all the ways that queens 
can safely be placed in the first m columns. 
(define (queens m) 
  (if (zero? m) 
      (stream (stream)) 
      (stream-of (stream-append p (stream n)) 
        (p in (queens (- m 1))) 
        (n in (stream-range 1 9)) 
        (safe? p n)))) 

To see the first solution to the Eight Queens problem, say 
(stream->list (stream-car (queens 8))) 

To see all 92 solutions, say 
(stream->list 
  (stream-map stream->list 
    (queens 8))) 

There is no explicit backtracking in the code.  The 
stream-of expression in queens returns all possible 
streams that satisfy safe?; implicit backtracking occurs 
in the recursive call to queens. 

5.3 Generators and co-routines 
It is possible to model generators and co-routines using 
streams.  Consider the task, due to Carl Hewitt, of deter-
mining if two trees have the same sequence of leaves: 

(same-fringe? = '(1 (2 3)) '((1 2) 3)) ⇒ #t 

(same-fringe? = '(1 2 3) '(1 (3 2))) ⇒ #f 

The simplest solution is to flatten both trees into lists and 
compare them element-by-element: 
(define (flatten tree) 
  (cond ((null? tree) '()) 
        ((pair? (car tree)) 
          (append (flatten (car tree)) 
                  (flatten (cdr tree)))) 
        (else (cons (car tree) 
                    (flatten (cdr tree)))))) 

(define (same-fringe? eql? tree1 tree2) 
  (let loop ((t1 (flatten tree1)) 
             (t2 (flatten tree2))) 
    (cond ((and (null? t1) (null? t2)) #t) 
          ((or (null? t1) (null? t2)) #f) 
          ((not (eql? (car t1) (car t2))) #f) 
          (else (loop (cdr t1) (cdr t2)))))) 

That works, but requires time to flatten both trees and 
space to store the flattened versions; if the trees are large, 
that can be a lot of time and space, and if the fringes dif-
fer, much of that time and space is wasted. 

Hewitt used a generator to flatten the trees one element at 
a time, storing only the current elements of the trees and 
the machines needed to continue flattening them, so 
same-fringe? could stop early if the trees differ.  Do-
rai Sitaram presents both the generator solution and a co-
routine solution, which both involve tricky calls to 
call-with-current-continuation and careful 
coding to keep them synchronized. 

An alternate solution flattens the two trees to streams in-
stead of lists, which accomplishes the same savings of 
time and space, and involves code that looks little differ-
ent than the list solution presented above: 
(define-stream (flatten tree) 
  (cond ((null? tree) stream-null) 
        ((pair? (car tree)) 
          (stream-append 
            (flatten (car tree)) 
            (flatten (cdr tree)))) 
        (else (stream-cons 
                (car tree) 
                (flatten (cdr tree)))))) 
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(define (same-fringe? eql? tree1 tree2) 
  (let loop ((t1 (flatten tree1)) 
             (t2 (flatten tree2))) 
    (cond ((and (stream-null? t1) 
                (stream-null? t2)) #t) 
          ((or  (stream-null? t1) 
                (stream-null? t2)) #f) 
          ((not (eql? (stream-car t1) 
                      (stream-car t2))) #f) 
          (else (loop (stream-cdr t1) 
                      (stream-cdr t2)))))) 

Note that streams, a data structure, replace generators or 
co-routines, which are control structures, providing a fine 
example of how lazy streams enhance modularity. 

5.4. A pipeline of procedures 
Another way in which streams promote modularity is 
enabling the use of many small procedures that are easily 
composed into larger programs, in the style of unix pipe-
lines, where streams are important because they allow a 
large dataset to be processed one item at a time.  Bird and 
Wadler provide the example of a text formatter.  Their 
example uses right-folds: 
(define (stream-fold-right f base strm)  
  (if (stream-null? strm) 
      base 
      (f (stream-car strm) 
         (stream-fold-right f base 
           (stream-cdr strm))))) 

(define (stream-fold-right-one f strm) 
  (stream-match strm 
  ((x) x) 
  ((x . xs)  
    (f x (stream-fold-right-one f xs))))) 

Bird and Wadler define text as a stream of characters, and 
develop a standard package for operating on text, which 
they derive mathematically (this assumes the line-
separator character is a single #\newline): 
(define (breakon a) 
  (stream-lambda (x xss) 
    (if (equal? a x) 
        (stream-append (stream (stream)) xss) 
        (stream-append 
          (stream (stream-append 
              (stream x) (stream-car xss))) 
          (stream-cdr xss))))) 

(define-stream (lines strm)  
  (stream-fold-right 
    (breakon #\newline) 
    (stream (stream)) 
    strm)) 

(define-stream (words strm) 
  (stream-filter stream-pair? 
    (stream-fold-right 
      (breakon #\space) 
      (stream (stream)) 
      strm))) 

(define-stream (paras strm) 
  (stream-filter stream-pair? 
    (stream-fold-right 
      (breakon stream-null) 
      (stream (stream)) 
      strm))) 

(define (insert a) 
  (stream-lambda (xs ys) 
    (stream-append xs (stream a) ys))) 

(define unlines 
  (lsec stream-fold-right-one 
    (insert #\newline))) 

(define unwords 
  (lsec stream-fold-right-one 
    (insert #\space))) 

(define unparas 
  (lsec stream-fold-right-one 
    (insert stream-null))) 

These versatile procedures can be composed to count 
words, lines and paragraphs; the normalize procedure 
squeezes out multiple spaces and blank lines: 
(define countlines 
  (compose stream-length lines)) 

(define countwords 
  (compose stream-length 
           stream-concat 
           (lsec stream-map words) 
           lines)) 

(define countparas 
  (compose stream-length paras lines)) 

(define parse 
  (compose (lsec stream-map 
             (lsec stream-map words)) 
           paras 
           lines)) 

(define unparse 
  (compose unlines 
           unparas 
           (lsec stream-map 
             (lsec stream-map unwords)))) 

(define normalize (compose unparse parse)) 

More useful than normalization is text-filling, which 
packs as many words onto each line as will fit. 
(define (greedy m ws) 
  (- (stream-length 
       (stream-take-while (rsec <= m) 
         (stream-scan 
           (lambda (n word) 
             (+ n (stream-length word) 1)) 
           -1 
           ws))) 1)) 

(define-stream (fill m ws) 
  (if (stream-null? ws) 
      stream-null 
      (let* ((n (greedy m ws)) 
             (fstline (stream-take n ws)) 
             (rstwrds (stream-drop n ws))) 
        (stream-append 
          (stream fstline) 
          (fill m rstwrds))))) 

(define linewords 
  (compose stream-concat 
           (lsec stream-map words))) 

(define textparas 
  (compose (lsec stream-map linewords) 
           paras 
           lines)) 
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(define (filltext m strm) 
  (unparse 
    (stream-map (lsec fill m) 
      (textparas strm)))) 

To display filename in lines of n characters, say: 
(stream-for-each display 
  (filltext n (file->stream filename))) 

Though each operator performs only a single task, they 
can be composed powerfully and expressively.  The alter-
native is to build a single monolithic procedure for each 
task, which would be harder and involve repetitive code.  
Streams ensure procedures are called as needed. 

5.5. Persistent data 
Queues are one of the fundamental data structures of 
computer science.  In functional languages, queues are 
commonly implemented using two lists, with the front 
half of the queue in one list, where the head of the queue 
can be accessed easily, and the rear half of the queue in 
reverse order in another list, where new items can easily 
be added to the end of a queue.  The standard form of 
such a queue holds that the front list can only be null if 
the rear list is also null:  
(define queue-null (cons '() '()) 

(define (queue-null? obj) 
  (and (pair? obj) (null? (car obj)))) 

(define (queue-check f r) 
  (if (null? f) 
      (cons (reverse r) '()) 
      (cons f r))) 

(define (queue-snoc q x) 
  (queue-check (car q) (cons x (cdr q)))) 

(define (queue-head q) 
  (if (null? (car q)) 
      (error "empty queue: head") 
      (car (car q)))) 

(define (queue-tail q) 
  (if (null? (car q)) 
      (error "empty-head: tail") 
      (queue-check (cdr (car q)) (cdr q)))) 

This queue operates in amortized constant time per opera-
tion, with two conses per element, one when it is added to 
the rear list, and another when the rear list is reversed to 
become the front list.  Queue-snoc and queue-head 
operate in constant time; queue-tail operates in 
worst-case linear time when the front list is empty. 

Chris Okasaki points out that, if the queue is used persis-
tently, its time-complexity rises from linear to quadratic 
since each persistent copy of the queue requires its own 
linear-time access.  The problem can be fixed by imple-
menting the front and rear parts of the queue as streams, 
rather than lists, and rotating one element from rear to 
front whenever the rear list is larger than the front list:  
(define queue-null 
  (cons stream-null stream-null)) 

(define (queue-null? x) 
  (and (pair? x) (stream-null (car x)))) 

(define (queue-check f r) 
  (if (< (stream-length r) (stream-length f)) 
      (cons f r) 
      (cons (stream-append f (stream-reverse r)) 
            stream-null))) 

(define (queue-snoc q x) 
  (queue-check (car q) (stream-cons x (cdr q)))) 

(define (queue-head q) 
  (if (stream-null? (car q)) 
      (error "empty queue: head") 
      (stream-car (car q)))) 

(define (queue-tail q) 
  (if (stream-null? (car q)) 
      (error "empty queue: tail") 
      (queue-check (stream-cdr (car q)) 
                   (cdr q)))) 

Memoization solves the persistence problem; once a 
queue element has moved from rear to front, it need never 
be moved again in subsequent traversals of the queue.  
Thus, the linear time-complexity to access all elements in 
the queue, persistently, is restored.  

5.6. Reducing two passes to one 
The final example is a lazy dictionary, where definitions 
and uses may occur in any order; in particular, uses may 
precede their corresponding definitions.  This is a com-
mon problem.  Many programming languages allow pro-
cedures to be used before they are defined.  Macro pro-
cessors must collect definitions and emit uses of text in 
order.  An assembler needs to know the address that a 
linker will subsequently give to variables.  The usual me-
thod is to make two passes over the data, collecting the 
definitions on the first pass and emitting the uses on the 
second pass.  But Chris Reade shows how streams allow 
the dictionary to be built lazily, so that only a single pass 
is needed.  Consider a stream of requests: 
(define requests 
  (stream 
    '(get 3) 
    '(put 1 "a")    ; use follows definition 
    '(put 3 "c")    ; use precedes definition 
    '(get 1) 
    '(get 2) 
    '(put 2 "b")    ; use precedes definition 
    '(put 4 "d")))  ; unused definition 

We want a procedure that will display cab, which is the 
result of (get 3), (get 1), and (get 2), in order.  
We first separate the request stream into gets and puts: 
(define (get? obj) (eq? (car obj) 'get)) 

(define-stream (gets strm) 
  (stream-map cadr (stream-filter get? strm))) 

(define-stream (puts strm) 
  (stream-map cdr  (stream-remove get? strm))) 

Now, run-dict inserts each element of the puts 
stream into a lazy dictionary, represented as a stream of 
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key/value pairs (an association stream), then looks up 
each element of the gets stream with stream-assoc: 
(define-stream (run-dict requests) 
  (let ((dict (build-dict (puts requests)))) 
    (stream-map (rsec stream-assoc dict) 
      (gets requests)))) 

(define (stream-assoc key dict) 
    (cond ((stream-null? dict) #f) 
          ((equal? key (car (stream-car dict))) 
            (stream-car dict)) 
          (else (stream-assoc key 
                  (stream-cdr dict))))) 

Dict is created in the let, but nothing is initially added 
to it.  Each time stream-assoc performs a lookup, 
enough of dict is built to satisfy the lookup, but no 
more.  We are assuming that each item is defined once 
and only once.  All that is left is to define the procedure 
that inserts new items into the dictionary, lazily: 
(define-stream (build-dict puts) 
  (if (stream-null? puts) 
      stream-null 
      (stream-cons 
        (stream-car puts) 
        (build-dict (stream-cdr puts))))) 

Now we can run the requests and print the result: 
(stream-for-each display 
  (stream-map cadr (run-dict requests))) 

The (put 4 "d") definition is never added to the dic-
tionary because it is never needed. 

5.7. Pitfalls 
Programming with streams, or any lazy evaluator, can be 
tricky, even for programmers experienced in the genre.  
Programming with streams is even worse in Scheme than 
in a purely functional language, because, though the 
streams are lazy, the surrounding Scheme expressions in 
which they are embedded are eager.  The impedance be-
tween lazy and eager can occasionally lead to astonishing 
results.  Thirty-two years ago, William Burge warned: 

Some care must be taken when a stream is produced 
to make sure that its elements are not really a list in 
disguise, in other words, to make sure that the stream 
elements are not materialized too soon. 

For example, a simple version of stream-map that re-
turns a stream built by applying a unary procedure to the 
elements of an input stream could be defined like this: 
(define-stream (stream-map proc strm) ;wrong! 
  (let loop ((strm strm)) 
    (if (stream-null? strm) 
        stream-null 
        (stream-cons 
          (proc (stream-car strm)) 
          (loop (stream-cdr strm)))))) 

That looks right.  It properly wraps the procedure in 
stream-lambda, and the two legs of the if both re-
turn streams, so it type-checks.  But it fails because the 

named let binds loop to a procedure using normal 
lambda rather than stream-lambda, so even though 
the first element of the result stream is lazy, subsequent 
elements are eager.  Stream-map can be written using 
stream-let: 
(define-stream (stream-map proc strm) 
  (stream-let loop ((strm strm)) 
    (if (stream-null? strm) 
        stream-null 
        (stream-cons 
          (proc (stream-car strm)) 
          (loop (stream-cdr strm)))))) 

Here, stream-let assures that each element of the 
result stream is properly delayed, because each is subject 
to the stream-lambda that is implicit in stream-
let, so the result is truly a stream, not a “list in dis-
guise.”  Another version of this procedure was given pre-
viously at the description of define-stream. 

Another common problem occurs when a stream-valued 
procedure requires the next stream element in its defini-
tion.  Consider this definition of stream-unique: 
(define-stream (stream-unique eql? strm) ;wrong! 
  (stream-match strm 
    (() strm) 
    ((_) strm) 
    ((a b . _) 
      (if (eql? a b) 
          (stream-unique eql? 
            (stream-cdr strm)) 
          (stream-cons a 
            (stream-unique eql? 
              (stream-cdr strm))))))) 

The (a b . _) pattern requires the value of the next 
stream element after the one being considered.  Thus, to 
compute the nth element of the stream, one must know the 
n+1st element, and to compute the n+1st element, one must 
know the n+2nd element, and to compute….  The correct 
version, given above in the description of stream-
drop-while, only needs the current stream element. 

A similar problem occurs when the stream expression 
uses the previous element to compute the current element: 
(define (nat n) 
  (stream-ref 
    (stream-let loop ((s (stream 0))) 
      (stream-cons (stream-car s) 
        (loop (stream (add1 (stream-car s)))))) 
    n)) 

This program traverses the stream of natural numbers, 
building the stream as it goes.  The definition is correct; 
(nat 15) evaluates to 15.  But it needlessly uses un-
bounded space because each stream element holds the 
value of the prior stream element in the binding to s. 

When traversing a stream, it is easy to write the expres-
sion in such a way that evaluation requires unbounded 
space, even when that is not strictly necessary.  During 
the discussion of SRFI-40, Joe Marshall created this in-
famous procedure: 
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(define (times3 n) 
  (stream-ref 
    (stream-filter 
      (lambda (x) 
        (zero? (modulo x n))) 
      (stream-from 0)) 
    3)) 

(times3 5) evaluates to 15 and (times3 #e1e9) 
evaluates to three billion, though it takes a while.  In ei-
ther case, times3 should operate in bounded space, 
since each iteration mutates the promise that holds the 
next value.  But it is easy to write times3 so that it does 
not operate in bounded space, as the follies of SRFI-40 
showed.  The common problem is that some element of 
the stream (often the first element) is bound outside the 
expression that is computing the stream, so it holds the 
head of the stream, which holds the second element, and 
so on.  In addition to testing the programmer, this proce-
dure tests the stream primitives (it caught several errors 
during development) and also tests the underlying 
Scheme system (it found a bug in one implementation). 

Laziness is no defense against an infinite loop; for in-
stance, the expression below never returns, because the 
odd? predicate never finds an odd stream element. 
(stream-null? 
  (stream-filter odd? 
    (stream-from 0 2))) 

Ultimately, streams are defined as promises, which are 
implemented as thunks (lambda with no arguments).  
Since a stream is a procedure, comparisons such as eq?, 
eqv? and equal? are not meaningful when applied to 
streams.  For instance, the expression (define s 
((stream-lambda () stream-null))) defines 
s as the null stream, and (stream-null? s) is #t, 
but (eq? s stream-null) is #f.  To determine if 
two streams are equal, it is necessary to evaluate the ele-
ments in their common prefixes, reporting #f if two ele-
ments ever differ and #t if both streams are exhausted at 
the same time. 
(define (stream-equal? eql? xs ys) 
  (cond ((and (stream-null? xs) 
              (stream-null? ys)) #t) 
        ((or (stream-null? xs) 
             (stream-null? ys)) #f) 
        ((not (eql? (stream-car xs) 
                    (stream-car ys))) #f) 
        (else (stream-equal? eql? 
                (stream-cdr xs) 
                (stream-cdr ys))))) 

It is generally not a good idea to mix lazy streams with 
eager side-effects, because the order in which stream ele-
ments are evaluated determines the order in which the 
side-effects occur.  For a simple example, consider this 
side-effecting version of strm123: 

(define strm123-with-side-effects 
  (stream-cons (begin (display "one") 1) 
    (stream-cons (begin (display "two") 2) 
      (stream-cons (begin (display "three") 3) 
        stream-null)))) 

The stream has elements 1 2 3.  But depending on the 
order in which stream elements are accessed, "one", 
"two" and "three" could be printed in any order. 

Since the performance of streams can be very poor, nor-
mal (eager) lists should be preferred to streams unless 
there is some compelling reason to the contrary.  For in-
stance, computing pythagorean triples with streams 
(stream-ref 
  (stream-of (list a b c) 
    (n in (stream-from 1)) 
    (a in (stream-range 1 n)) 
    (b in (stream-range a n)) 
    (c is (- n a b)) 
    (= (+ (* a a) (* b b)) (* c c))) 
  50) 

is about two orders of magnitude slower than the equiva-
lent expression using loops. 
(do ((n 1 (+ n 1))) ((> n 228)) 
  (do ((a 1 (+ a 1))) ((> a n)) 
    (do ((b a (+ b 1))) ((> b n)) 
      (let ((c (- n a b))) 
        (if (= (+ (* a a) (* b b)) (* c c)) 
            (display (list a b c))))))) 

6. Implementation 
Bird and Wadler describe streams as either null or a pair 
with a stream in the tail: 
α list :: null | α * α list 

That works in a purely functional language such as Mi-
randa or Haskell because the entire language is lazy.  In 
an eager language like ML or Scheme, of course, it’s just 
a normal, eager list. 

Using ML, Wadler, Taha and MacQueen give the type of 
even streams as: 
datatype 'a stream_ 
  = Nil_ 
  | Cons_ of 'a * 'a stream 
withtype 'a stream 
  = 'a stream_ susp; 

Their susp type is similar to Scheme’s promise type.  
Since Scheme conflates the notions of record and type 
(the only way to create a new type disjoint from all other 
types is to create a record), it is necessary to distribute the 
suspension through the two constructors of the stream 
data type: 
α stream 
  :: (promise stream-null) 
  |  (promise (α stream-pair)) 

α stream-pair 
  :: α × (α stream) 



Streams  Page 16 

That type captures the systematic suspension of recursive 
promises that is the essence of “streamness.”  But it 
doesn’t quite work, because Scheme is eager rather than 
lazy, and both the car and the cdr of the stream are eva-
luated too early.  So the final type of streams delays both 
the car and the cdr of the stream-pair: 
α stream 
  :: (promise stream-null) 
  |  (promise (α stream-pair)) 

α stream-pair 
  :: (promise α) × (promise (α stream)) 

The two outer promises, in the stream type, provide 
streams without memoization.  The two inner promises, in 
the stream-pair type, add the memoization that is 
characteristic of streams in modern functional languages. 

Lists provide seven primitive operations: the two con-
structors '() and cons, the type predicates list?, 
null? and pair?, and the accessors car and cdr for 
pairs.  All other list operations can be derived from those 
primitives. 

It would seem that the same set of primitives could apply 
to streams, but in fact one additional primitive is required.  
André van Tonder describes the reason in his discussion 
of the promise data type.  The promises of R6RS are in-
adequate to support iterative algorithms because each 
time a promise is called iteratively it binds the old prom-
ise in the closure that defines the new promise (so the old 
promise can be forced later, if requested).  However, in 
the case of iteration, the old promise becomes unreacha-
ble, so instead of creating a new promise that binds the 
old promise within, it is better to mutate the promise; that 
way, no space is wasted by the old promise. 

Van Tonder describes this new promise type, and pro-
vides a recipe for its use: all constructors are wrapped 
with delay, all accessors are wrapped with force, and 
all function bodies are wrapped with lazy.  Given the 
seven primitives above, the first two parts of van Tonder’s 
recipe are simple: the two constructors stream-null 
and stream-pair hide delay, and the two accessors 
stream-car and stream-cdr hide force 
(stream-null? and stream-pair? also hide 
force, so they can distinguish the two constructors of 
the stream type). 

Although the new promise type prevents a space leak, it 
creates a new problem: there is no place to hide the lazy 
that is the third part of van Tonder’s recipe.  SRFI-40 
solved this problem by exposing it (actually, it exposed 
delay, which was incorrect).  But that violates good 
software engineering by preventing the stream data type 
from being fully abstract.  The solution of SRFI-41 is to 
create a new primitive, stream-lambda, that returns a 
function that hides lazy. 

Besides hiding lazy and making the types work out cor-
rectly, stream-lambda is obvious and easy-to-use for 
competent Scheme programmers, especially when aug-
mented with the syntactic sugar of define-stream 
and named stream-let.  The alternative of exposing 
stream-lazy would be less clear and harder to use. 

One of the hardest tasks when writing any program li-
brary is to decide what to include and, more importantly, 
what to exclude.  One important guideline is minimalism, 
since once an operator enters a library it must remain for-
ever: Il semble que la perfection soit atteinte non quand il 
n’y a plus rien à ajouter, mais quand il n’y a plus rien à 
retrancher. 

Since streams are substantially slower than lists (the 
stream primitives require numerous type conversions, and 
list operations in most Scheme implementations are 
heavily optimized), most programmers will use streams 
only when the sequence of elements is truly infinite (such 
as mathematical series) or when there is some clear ad-
vantage of laziness (such as reducing the number of 
passes though a large data set).  Thus, the library is biased 
toward functions that work with infinite streams left-to-
right.  In particular, there is no right-fold; if you need to 
materialize an entire stream, it’s best to use a list. 

The complete implementation is given in the appendices. 
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Appendix 1:  Implementation of (streams primitive) 
(library (streams primitive) 

  (export stream-null stream-cons stream? stream-null? stream-pair? 
          stream-car stream-cdr stream-lambda) 

  (import (rnrs) (rnrs mutable-pairs)) 

  (define-record-type (stream-type make-stream stream?) 
    (fields (mutable box stream-promise stream-promise!))) 
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  (define-syntax stream-lazy 
    (syntax-rules () 
      ((stream-lazy expr) 
        (make-stream 
          (cons 'lazy (lambda () expr)))))) 

  (define (stream-eager expr) 
    (make-stream 
      (cons 'eager expr))) 

  (define-syntax stream-delay 
    (syntax-rules () 
      ((stream-delay expr) 
        (stream-lazy (stream-eager expr))))) 

  (define (stream-force promise) 
    (let ((content (stream-promise promise))) 
      (case (car content) 
        ((eager) (cdr content)) 
        ((lazy)  (let* ((promise* ((cdr content))) 
                        (content  (stream-promise promise))) 
                   (if (not (eqv? (car content) 'eager)) 
                       (begin (set-car! content (car (stream-promise promise*))) 
                              (set-cdr! content (cdr (stream-promise promise*))) 
                              (stream-promise! promise* content))) 
                   (stream-force promise)))))) 

  (define stream-null (stream-delay (cons 'stream 'null))) 

  (define-record-type (stream-pare-type make-stream-pare stream-pare?) 
    (fields (immutable kar stream-kar) (immutable kdr stream-kdr))) 

  (define (stream-pair? obj) 
    (and (stream? obj) (stream-pare? (stream-force obj)))) 

  (define (stream-null? obj) 
    (and (stream? obj) 
         (eqv? (stream-force obj) 
               (stream-force stream-null)))) 

  (define-syntax stream-cons 
    (syntax-rules () 
      ((stream-cons obj strm) 
        (stream-eager (make-stream-pare (stream-delay obj) (stream-lazy strm)))))) 

  (define (stream-car strm) 
    (cond ((not (stream? strm)) (error 'stream-car "non-stream")) 
          ((stream-null? strm) (error 'stream-car "null stream")) 
          (else (stream-force (stream-kar (stream-force strm)))))) 

  (define (stream-cdr strm) 
    (cond ((not (stream? strm)) (error 'stream-cdr "non-stream")) 
          ((stream-null? strm) (error 'stream-cdr "null stream")) 
          (else (stream-kdr (stream-force strm))))) 

  (define-syntax stream-lambda 
    (syntax-rules () 
      ((stream-lambda formals body0 body1 ...) 
        (lambda formals (stream-lazy (let () body0 body1 ...))))))) 

Appendix 2:  Implementation of (streams derived) 
(library (streams derived) 

  (export define-stream list->stream port->stream stream stream->list 
          stream-append stream-concat stream-constant stream-drop 
          stream-drop-while stream-filter stream-fold stream-for-each stream-from 
          stream-iterate stream-length stream-let stream-map stream-match _ 
          stream-of stream-range stream-ref stream-reverse stream-scan stream-take 
          stream-take-while stream-unfold stream-unfolds stream-zip) 

  (import (rnrs) (streams primitive)) 
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  (define-syntax define-stream 
    (syntax-rules () 
      ((define-stream (name . formal) body0 body1 ...) 
        (define name (stream-lambda formal body0 body1 ...))))) 

  (define (list->stream objs) 
    (define list->stream 
      (stream-lambda (objs) 
        (if (null? objs) 
            stream-null 
            (stream-cons (car objs) (list->stream (cdr objs)))))) 
    (if (not (list? objs)) 
        (error 'list->stream "non-list argument") 
        (list->stream objs))) 

  (define (port->stream . port) 
    (define port->stream 
      (stream-lambda (p) 
        (let ((c (read-char p))) 
          (if (eof-object? c) 
              stream-null 
              (stream-cons c (port->stream p)))))) 
    (let ((p (if (null? port) (current-input-port) (car port)))) 
      (if (not (input-port? p)) 
          (error 'port->stream "non-input-port argument") 
          (port->stream p)))) 

  (define-syntax stream 
    (syntax-rules () 
      ((stream) stream-null) 
      ((stream x y ...) (stream-cons x (stream y ...))))) 

  (define (stream->list . args) 
    (let ((n (if (= 1 (length args)) #f (car args))) 
          (strm (if (= 1 (length args)) (car args) (cadr args)))) 
      (cond ((not (stream? strm)) (error 'stream->list "non-stream argument")) 
            ((and n (not (integer? n))) (error 'stream->list "non-integer count")) 
            ((and n (negative? n)) (error 'stream->list "negative count")) 
            (else (let loop ((n (if n n -1)) (strm strm)) 
                    (if (or (zero? n) (stream-null? strm)) 
                        '() 
                        (cons (stream-car strm) (loop (- n 1) (stream-cdr strm))))))))) 

  (define (stream-append . strms) 
    (define stream-append 
      (stream-lambda (strms) 
        (cond ((null? (cdr strms)) (car strms)) 
              ((stream-null? (car strms)) (stream-append (cdr strms))) 
              (else (stream-cons (stream-car (car strms)) 
                                 (stream-append (cons (stream-cdr (car strms)) (cdr strms)))))))) 
    (cond ((null? strms) stream-null) 
          ((exists (lambda (x) (not (stream? x))) strms) 
            (error 'stream-append "non-stream argument")) 
          (else (stream-append strms)))) 

  (define (stream-concat strms) 
    (define stream-concat 
      (stream-lambda (strms) 
        (cond ((stream-null? strms) stream-null) 
              ((not (stream? (stream-car strms))) 
                (error 'stream-concat "non-stream object in input stream")) 
              ((stream-null? (stream-car strms)) 
                (stream-concat (stream-cdr strms))) 
              (else (stream-cons 
                      (stream-car (stream-car strms)) 
                      (stream-concat 
                        (stream-cons (stream-cdr (stream-car strms)) (stream-cdr strms)))))))) 
    (if (not (stream? strms)) 
        (error 'stream-concat "non-stream argument") 
        (stream-concat strms))) 
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  (define stream-constant 
    (stream-lambda objs 
      (cond ((null? objs) stream-null) 
            ((null? (cdr objs)) (stream-cons (car objs) (stream-constant (car objs)))) 
            (else (stream-cons (car objs) 
                               (apply stream-constant (append (cdr objs) (list (car objs))))))))) 

  (define (stream-drop n strm) 
    (define stream-drop 
      (stream-lambda (n strm) 
        (if (or (zero? n) (stream-null? strm)) 
            strm 
            (stream-drop (- n 1) (stream-cdr strm))))) 
    (cond ((not (integer? n)) (error 'stream-drop "non-integer argument")) 
          ((negative? n) (error 'stream-drop "negative argument")) 
          ((not (stream? strm)) (error 'stream-drop "non-stream argument")) 
          (else (stream-drop n strm)))) 

  (define (stream-drop-while pred? strm) 
    (define stream-drop-while 
      (stream-lambda (strm) 
        (if (and (stream-pair? strm) (pred? (stream-car strm))) 
            (stream-drop-while (stream-cdr strm)) 
            strm))) 
    (cond ((not (procedure? pred?)) (error 'stream-drop-while "non-procedural argument")) 
          ((not (stream? strm)) (error 'stream-drop-while "non-stream argument")) 
          (else (stream-drop-while strm)))) 

  (define (stream-filter pred? strm) 
    (define stream-filter 
      (stream-lambda (strm) 
        (cond ((stream-null? strm) stream-null) 
              ((pred? (stream-car strm)) 
                (stream-cons (stream-car strm) (stream-filter (stream-cdr strm)))) 
              (else (stream-filter (stream-cdr strm)))))) 
    (cond ((not (procedure? pred?)) (error 'stream-filter "non-procedural argument")) 
          ((not (stream? strm)) (error 'stream-filter "non-stream argument")) 
          (else (stream-filter strm)))) 

  (define (stream-fold proc base strm) 
    (cond ((not (procedure? proc)) (error 'stream-fold "non-procedural argument")) 
          ((not (stream? strm)) (error 'stream-fold "non-stream argument")) 
          (else (let loop ((base base) (strm strm)) 
                  (if (stream-null? strm) 
                      base 
                      (loop (proc base (stream-car strm)) (stream-cdr strm))))))) 

  (define (stream-for-each proc . strms) 
    (define (stream-for-each strms) 
      (if (not (exists stream-null? strms)) 
          (begin (apply proc (map stream-car strms)) 
                 (stream-for-each (map stream-cdr strms))))) 
    (cond ((not (procedure? proc)) (error 'stream-for-each "non-procedural argument")) 
          ((null? strms) (error 'stream-for-each "no stream arguments")) 
          ((exists (lambda (x) (not (stream? x))) strms) 
            (error 'stream-for-each "non-stream argument")) 
          (else (stream-for-each strms)))) 

  (define (stream-from first . step) 
    (define stream-from 
      (stream-lambda (first delta) 
        (stream-cons first (stream-from (+ first delta) delta)))) 
    (let ((delta (if (null? step) 1 (car step)))) 
      (cond ((not (number? first)) (error 'stream-from "non-numeric starting number")) 
            ((not (number? delta)) (error 'stream-from "non-numeric step size")) 
            (else (stream-from first delta))))) 

  (define (stream-iterate proc base) 
    (define stream-iterate 
      (stream-lambda (base) 
        (stream-cons base (stream-iterate (proc base))))) 
    (if (not (procedure? proc)) 
        (error 'stream-iterate "non-procedural argument") 
        (stream-iterate base))) 
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  (define (stream-length strm) 
    (if (not (stream? strm)) 
        (error 'stream-length "non-stream argument") 
        (let loop ((len 0) (strm strm)) 
          (if (stream-null? strm) 
              len 
              (loop (+ len 1) (stream-cdr strm)))))) 

  (define-syntax stream-let 
    (syntax-rules () 
      ((stream-let tag ((name val) ...) body1 body2 ...) 
       ((letrec ((tag (stream-lambda (name ...) body1 body2 ...))) tag) val ...)))) 

  (define (stream-map proc . strms) 
    (define stream-map 
      (stream-lambda (strms) 
        (if (exists stream-null? strms) 
            stream-null 
            (stream-cons (apply proc (map stream-car strms)) 
                         (stream-map (map stream-cdr strms)))))) 
    (cond ((not (procedure? proc)) (error 'stream-map "non-procedural argument")) 
          ((null? strms) (error 'stream-map "no stream arguments")) 
          ((exists (lambda (x) (not (stream? x))) strms) 
            (error 'stream-map "non-stream argument")) 
          (else (stream-map strms)))) 

  (define-syntax stream-match 
    (syntax-rules () 
      ((stream-match strm-expr clause ...) 
        (let ((strm strm-expr)) 
          (cond 
            ((not (stream? strm)) (error 'stream-match "non-stream argument")) 
            ((stream-match-test strm clause) => car) ... 
            (else (error 'stream-match "pattern failure"))))))) 

  (define-syntax stream-match-test 
    (syntax-rules () 
      ((stream-match-test strm (pattern fender expr)) 
        (stream-match-pattern strm pattern () (and fender (list expr)))) 
      ((stream-match-test strm (pattern expr)) 
        (stream-match-pattern strm pattern () (list expr))))) 

  (define-syntax stream-match-pattern 
    (lambda (x) 
      (define (wildcard? x) 
        (and (identifier? x) 
             (free-identifier=? x (syntax _)))) 
      (syntax-case x ()  
        ((stream-match-pattern strm () (binding ...) body) 
          (syntax (and (stream-null? strm) (let (binding ...) body)))) 
        ((stream-match-pattern strm (w? . rest) (binding ...) body) 
          (wildcard? #'w?)  
          (syntax (and (stream-pair? strm) 
                       (let ((strm (stream-cdr strm))) 
                         (stream-match-pattern strm rest (binding ...) body))))) 
        ((stream-match-pattern strm (var . rest) (binding ...) body) 
          (syntax (and (stream-pair? strm) 
                       (let ((temp (stream-car strm)) (strm (stream-cdr strm)))  
                         (stream-match-pattern strm rest ((var temp) binding ...) body))))) 
        ((stream-match-pattern strm w? (binding ...) body) 
          (wildcard? #'w?) 
          (syntax (let (binding ...) body))) 
        ((stream-match-pattern strm var (binding ...) body)  
          (syntax (let ((var strm) binding ...) body)))))) 

  (define-syntax stream-of 
    (syntax-rules () 
      ((_ expr rest ...) 
        (stream-of-aux expr stream-null rest ...)))) 

  (define-syntax stream-of-aux 
    (syntax-rules (in is) 
      ((stream-of-aux expr base) 
        (stream-cons expr base)) 
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      ((stream-of-aux expr base (var in stream) rest ...) 
        (stream-let loop ((strm stream)) 
          (if (stream-null? strm) 
              base 
              (let ((var (stream-car strm))) 
                (stream-of-aux expr (loop (stream-cdr strm)) rest ...))))) 
      ((stream-of-aux expr base (var is exp) rest ...) 
        (let ((var exp)) (stream-of-aux expr base rest ...))) 
      ((stream-of-aux expr base pred? rest ...) 
        (if pred? (stream-of-aux expr base rest ...) base)))) 

  (define (stream-range first past . step) 
    (define stream-range 
      (stream-lambda (first past delta lt?) 
        (if (lt? first past) 
            (stream-cons first (stream-range (+ first delta) past delta lt?)) 
            stream-null))) 
    (cond ((not (number? first)) (error 'stream-range "non-numeric starting number")) 
          ((not (number? past)) (error 'stream-range "non-numeric ending number")) 
          (else (let ((delta (cond ((pair? step) (car step)) ((< first past) 1) (else -1)))) 
                  (if (not (number? delta)) 
                      (error 'stream-range "non-numeric step size") 
                      (let ((lt? (if (< 0 delta) < >))) 
                        (stream-range first past delta lt?))))))) 

  (define (stream-ref strm n) 
    (cond ((not (stream? strm)) (error 'stream-ref "non-stream argument")) 
          ((not (integer? n)) (error 'stream-ref "non-integer argument")) 
          ((negative? n) (error 'stream-ref "negative argument")) 
          (else (let loop ((strm strm) (n n)) 
                  (cond ((stream-null? strm) (error 'stream-ref "beyond end of stream")) 
                        ((zero? n) (stream-car strm)) 
                        (else (loop (stream-cdr strm) (- n 1)))))))) 

  (define (stream-reverse strm) 
    (define stream-reverse 
      (stream-lambda (strm rev) 
        (if (stream-null? strm) 
            rev 
            (stream-reverse (stream-cdr strm) (stream-cons (stream-car strm) rev))))) 
    (if (not (stream? strm)) 
        (error 'stream-reverse "non-stream argument") 
        (stream-reverse strm stream-null))) 

  (define (stream-scan proc base strm) 
    (define stream-scan 
      (stream-lambda (base strm) 
        (if (stream-null? strm) 
            (stream base) 
            (stream-cons base (stream-scan (proc base (stream-car strm)) (stream-cdr strm)))))) 
    (cond ((not (procedure? proc)) (error 'stream-scan "non-procedural argument")) 
          ((not (stream? strm)) (error 'stream-scan "non-stream argument")) 
          (else (stream-scan base strm)))) 

  (define (stream-take n strm) 
    (define stream-take 
      (stream-lambda (n strm) 
        (if (or (stream-null? strm) (zero? n)) 
            stream-null 
            (stream-cons (stream-car strm) (stream-take (- n 1) (stream-cdr strm)))))) 
    (cond ((not (stream? strm)) (error 'stream-take "non-stream argument")) 
          ((not (integer? n)) (error 'stream-take "non-integer argument")) 
          ((negative? n) (error 'stream-take "negative argument")) 
          (else (stream-take n strm)))) 

  (define (stream-take-while pred? strm) 
    (define stream-take-while 
      (stream-lambda (strm) 
        (cond ((stream-null? strm) stream-null) 
              ((pred? (stream-car strm)) 
                (stream-cons (stream-car strm) (stream-take-while (stream-cdr strm)))) 
              (else stream-null)))) 
    (cond ((not (stream? strm)) (error 'stream-take-while "non-stream argument")) 
          ((not (procedure? pred?)) (error 'stream-take-while "non-procedural argument")) 
          (else (stream-take-while strm)))) 
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  (define (stream-unfold mapper pred? generator base) 
    (define stream-unfold 
      (stream-lambda (base) 
        (if (pred? base) 
            (stream-cons (mapper base) (stream-unfold (generator base))) 
            stream-null))) 
    (cond ((not (procedure? mapper)) (error 'stream-unfold "non-procedural mapper")) 
          ((not (procedure? pred?)) (error 'stream-unfold "non-procedural pred?")) 
          ((not (procedure? generator)) (error 'stream-unfold "non-procedural generator")) 
          (else (stream-unfold base)))) 

  (define (stream-unfolds gen seed) 
    (define (len-values gen seed) 
      (call-with-values 
        (lambda () (gen seed)) 
        (lambda vs (- (length vs) 1)))) 
    (define unfold-result-stream 
      (stream-lambda (gen seed) 
        (call-with-values 
          (lambda () (gen seed)) 
          (lambda (next . results) 
            (stream-cons results (unfold-result-stream gen next)))))) 
    (define result-stream->output-stream 
      (stream-lambda (result-stream i) 
        (let ((result (list-ref (stream-car result-stream) (- i 1)))) 
          (cond ((pair? result) 
                  (stream-cons 
                    (car result) 
                    (result-stream->output-stream (stream-cdr result-stream) i))) 
                ((not result) 
                  (result-stream->output-stream (stream-cdr result-stream) i)) 
                ((null? result) stream-null) 
                (else (error 'stream-unfolds "can't happen")))))) 
    (define (result-stream->output-streams result-stream) 
      (let loop ((i (len-values gen seed)) (outputs '())) 
        (if (zero? i) 
            (apply values outputs) 
            (loop (- i 1) (cons (result-stream->output-stream result-stream i) outputs))))) 
    (if (not (procedure? gen)) 
        (error 'stream-unfolds "non-procedural argument") 
        (result-stream->output-streams (unfold-result-stream gen seed)))) 

  (define (stream-zip . strms) 
    (define stream-zip 
      (stream-lambda (strms) 
        (if (exists stream-null? strms) 
            stream-null 
            (stream-cons (map stream-car strms) (stream-zip (map stream-cdr strms)))))) 
    (cond ((null? strms) (error 'stream-zip "no stream arguments")) 
          ((exists (lambda (x) (not (stream? x))) strms) 
            (error 'stream-zip "non-stream argument")) 
          (else (stream-zip strms))))) 

Appendix 3: Implementation of (streams) 
(library (streams) 

  (export stream-null stream-cons stream? stream-null? stream-pair? stream-car 
          stream-cdr stream-lambda define-stream list->stream port->stream stream 
          stream->list stream-append stream-concat stream-constant stream-drop 
          stream-drop-while stream-filter stream-fold stream-for-each stream-from 
          stream-iterate stream-length stream-let stream-map stream-match _ 
          stream-of stream-range stream-ref stream-reverse stream-scan stream-take 
          stream-take-while stream-unfold stream-unfolds stream-zip) 

  (import (streams primitive) (streams derived))) 


