SPDX-FileCopyrightText: 2009 Joo ChurlSoo SPDX-License-Identifier: MIT Title define-lambda-object Author Joo ChurlSoo Abstract This SRFI introduces a macro, DEFINE-LAMBDA-OBJECT which defines a set of procedures, that is, a group, two constructors, and a predicate. The constructors also make a group of procedures, namely lambda objects. The macro extends DEFINE-RECORD-TYPE (SRFI 9) in being more general but much less general than DEFCLASS (CLOS). The macro has no explicit field accessors and mutators but parent groups, required fields, optional fields, automatic fields, read-write fields, read-only fields, inaccessible hidden fields, immutable virtual fields, and common sharing fields. Rationale An object created by a constructor procedure is a procedure whose first argument is a symbolized field name that is used to identify fields. The lambda object plays the role of the accessor and mutator of each field. Though the average time required to access a randomly chosen field is more for the lambda object than for the accessors and mutators of most other record-defining macros that use field indices to indentify fields, the lambda object makes the troublesome explicit or implicit accessors and mutators unnecessary. In addition, this makes the accesors and mutators to be automatically `nongenerative' and reduces the role of the predicate procedure. Although DEFINE-RECORD-TYPE of R6RS can also have implicit accessors and mutators, they should know their own record name. Further more, when there are parents, they should know both their own record name and their parents' record names, which could make users confused, though there is an advantage that a record can have another field with the same name. This macro works not only as DEFINE-RECORD-TYPE with required fields but also as DEFSTRUCT of Common Lisp with optional fields. The automatic field can be used as a procedure that modifies or handles the values of the other fields. When a group has multiple parent groups, all the fields of parent groups must exist in the field spec of the child group in contrary with DEFINE-RECORD-TYPE of R6RS. This is too much trouble in case parent groups have several tens of fields. But it also has the advantage of reconfirming the existence and properties of each field, and making the constructors to be able to be defined irrespectively the order of the parents' fields. From a practical point of view, inheritance may be superfluous in this macro as the lambda object itself has data and methods as well as their accessors and mutators. Specification (define-lambda-object ) --> | ( *) --> ;unamendable group | () ;amendable group --> * * * --> ;read-only field | () ;read-write field --> ( ) ;read-only field | (() ) ;read-write field | (' ) ;inaccessible hidden field --> (, ) ;read-only field | ((,) ) ;read-write field | (', ) ;inaccessible hidden field | (`, ) ;immutable virtual field | (,, ) ;common read-only field | ((,,) ) ;common read-write field The name of is generated by prefixing `make-' to the group name, or by prefixing `make-' and postfixing `-by-name' to the group name. The name of is generated by adding a question mark (`?') to the end of the group name. The and must be identifiers. Each is an that is evaluated in an environment that the values of all the previous s are visible. There is one exception to this rule. The s of s are evaluated in the outer environment of the define-lambda-object form, and their values are visible as the s of the other fields are evaluated. The define-lambda-object form is a definition and can appear anywhere any other can appear. Each time define-lambda-object form is evaluated, a new group is created with distinct , , and procedures. The is bound to a procedure of one argument. Like a gene, it has information on its s, s, , and the number and properties of s. And they are checked out whenever define-lambda-object form is evaluated. In case of inheritance, all the s of s must exist in the of the child group, irrespectively of the order. Otherwise an error is signaled. In addition, the properties (mutability, sort of field, and default expression) of s of unamendable groups must be preserved in contrast with those of amendable groups. Otherwise an error is signaled. The is bound to a procedure that takes at least as many arguments as the number of s. Whenever it is called, it returns an object of the , namely a procedure, which has information on its own group and all that goes with it. Its first argument must be a symbol of the same name as . Otherwise an error is signaled. The object becomes an accessor procedure of each in case of one argument and a mutator procedure of each in case of two arguments where the second argument is a new field value. The names of s are used to access the s as symbols of the same names. So they must be distinct. Otherwise an error is signaled. The read-write fields can be modified, whereas any attempt to modify the values of the read-only fields via mutators signals an error. Note: The read-only fields are not immutable. Their values, for instance, can be modified by other fields whose values work like their mutators. The is initialized to the first one of the remaining arguments. If there are no more remaining arguments, an error is signaled. The initialization of the s is done by two types of s: 1. constructor The initialization method of s is the same as that of s except that the field is bound to the instead of signaling an error if there are no more remaining arguments. 2. constructor The name used at a call site for the corresponding is a symbol of the same name as the . The remaining arguments are sequentially interpreted as a series of pairs, where the first member of each pair is a field name and the second is the corresponding value. If there is no element for a particular field name, the field is initialized to the . The s are initialized to each corresponding that is evaluated at the time the define-lambda-object form is evaluated, and the values are shared with all the lambda objects that are maded by the constructors of the define-lambda-object form. The other s except s are initialized to each corresponding that is evaluated at the time the lambda object is made by a constructor. The is an externally nonexistent field, that is, the field is invisible outside of the define-lambda-object form but visible inside of it. On the contrary, the is an internally nonexistent field whose is evaluated each time when the field is accessed. The is a predicate procedure that returns #t for objects constructed by or s for child groups and #f for everything else. Examples ;; The `x' is a read-write field. ;; The `y' is a read-only field. (define-lambda-object ppoint (x) y) (define pp (make-ppoint 10 20)) (pp 'x) => 10 (pp 'y) => 20 (pp 'x 11) (pp 'x) => 11 (pp 'y 22) => error: read-only field y ;; The parent group `ppoint' is an unamendable group. (define-lambda-object (cpoint ppoint) x y color) => error: incompatible read-write field ppoint x ;; The 'color-init' and 'area-init' are automatic fields. ;; The 'color' and 'area' are virtual fields. (define color 'black) (define-lambda-object (cpoint ppoint) (x) y (,color-init color) (,area-init (* x y)) (`,color color) (`,area (* x y))) (define ap (make-cpoint 3 33 'black)) => error: expects 2 arguments (define ap (make-cpoint 10 20)) (map ap '(x y color-init color area-init area)) => (10 20 black black 200 200) (ap 'x 30) (map ap '(x y color-init color area-init area)) => (30 20 black black 200 600) (set! color 'white) (map ap '(x y color-init color area-init area)) => (30 20 black white 200 600) ;; The 'color' is an automatic common field. (define-lambda-object (cpoint ppoint) (x) y ((,,color) color) (`,area (* x y)) (,set/add (lambda (i j) (set! x (+ i x)) (set! y (+ j y))))) (define tp (make-cpoint 10 15)) (map tp '(x y color area)) => (10 15 white 150) (define cp (make-cpoint 15 20)) (map cp '(x y color area)) => (15 20 white 300) (cp 'color 'brown) ((cp 'set/add) 5 10) (map cp '(x y color area)) => (20 30 brown 600) (map tp '(x y color area)) => (10 15 brown 150) (cpoint? ap) => #f (cpoint? tp) => #t (cpoint? cp) => #t (ppoint? cp) => #t ;; The parent group `ppoint' is an amendable group. ;; The 'stack' is an optional hidden field. ;; The 'pop' is a virtual field. ;; The 'push' is an automatic field. (define-lambda-object (spoint (ppoint)) (x 0) (y x) (z x) ('stack '()) (`,pop (if (null? stack) (error 'spoint "null stack" stack) (let ((s (car stack))) (set! stack (cdr stack)) s))) (,push (lambda (s) (set! stack (cons s stack))))) (define sp (make-spoint)) (map sp '(x y z)) => (0 0 0) (define sp (make-spoint 5 55)) (map sp '(x y z)) => (5 55 5) (define sp (make-spoint-by-name 'z 100 'stack (list 'sunflower))) (map sp '(x y z)) => (0 0 100) ((sp 'push) 'rose) ((sp 'push) 'lily) (sp 'pop) => lily (sp 'pop) => rose (sp 'pop) => sunflower (sp 'pop) => error: null stack () (sp 'stack) => error: absent field stack ;; The 'stack' is an automatic hidden field. ;; The `set/add' is the same automatic field as that of `cpoint' group, ;; but it has a different default which simulates polymorphism and overloading. (define-lambda-object (epoint (spoint) (cpoint)) ((x) 5) ((y) 10) ((z) 15) ((planet) "earth") (,,color "brown") (',stack '()) (`,area (* x y)) (`,volume (* x y z)) (`,pop (if (null? stack) (error 'spoint "null stack" stack) (let ((s (car stack))) (set! stack (cdr stack)) s))) (,push (lambda (s) (set! stack (cons s stack)))) (,adbmal (lambda (f) (f x y z color planet (* x y) (* x y z)))) (,set/add (case-lambda ((i j) (cond ((and (string? i) (string? j)) (set! color i) (set! planet j)) ((and (number? i) (number? j)) (set! x (+ i x)) (set! y (+ j y))) (else (error 'epoint "set/add: wrong data type" i j)))) ((i j k) (set! x (+ i x)) (set! y (+ j y)) (set! z (+ k z)))))) (define ep (make-epoint-by-name 'planet "jupiter")) ((ep 'adbmal) vector) => #(5 10 15 "brown" "jupiter" 50 750) (define tp (make-epoint 10 15 20)) ((tp 'adbmal) vector) => #(10 15 20 "brown" "earth" 150 3000) (map (lambda (o) (o 'x)) (list pp ap cp sp ep)) => (11 30 20 0 5) (map (lambda (p) (p ep)) (list ppoint? cpoint? spoint? epoint?)) => (#t #t #t #t) ((ep 'set/add) "red" "mars") ((ep 'adbmal) list) => (5 10 15 "red" "mars" 50 750) ((tp 'adbmal) list) => (10 15 20 "red" "earth" 150 3000) ((ep 'set/add) 5 10) ((ep 'adbmal) list) => (10 20 15 "red" "mars" 200 3000) ((ep 'set/add) 10 30 50) (map ep '(x y z area volume)) => (20 50 65 1000 65000) (map cp '(x y area)) => (20 30 600) ((cp 'set/add) 20 50) (map cp '(x y area)) => (40 80 3200) ((cp 'set/add) 10 100 1000) => error: expects 2 arguments epoint => # (epoint 'parent) => (# #) (epoint 'constructor) => (# #) (epoint 'predicate) => # (epoint 'read-write-field) => (x y z planet) (epoint 'read-only-field) => (color area volume pop push adbmal set/add) (epoint 'required-field) => () (epoint 'optional-field) => ((x 5) (y 10) (z 15) (planet "earth")) (epoint 'common-field) => ((color "brown")) (epoint 'hidden-field) => ((stack '())) (epoint 'virtual-field) => ((area (* x y)) (volume (* x y z)) (pop (if (null? stack) (error 'spoint "null stack" stack) (let ((s (car stack))) (set! stack (cdr stack)) s)))) (epoint 'automatic-field) =>((color "brown") (area (* x y)) (volume (* x y z)) (pop (if (null? stack) (error 'spoint "null stack" stack) (let ((s (car stack))) (set! stack (cdr stack)) s))) (stack '()) (push (lambda (s) (set! stack (cons s stack)))) (adbmal (lambda (f) (f x y z color planet (* x y) (* x y z)))) (set/add (case-lambda ((i j) (cond ((and (string? i) (string? j)) (set! color i) (set! planet j)) ((and (number? i) (number? j)) (set! x (+ i x)) (set! y (+ j y))) (else (error 'epoint "set/add: wrong data type" i j)))) ((i j k) (set! x (+ i x)) (set! y (+ j y)) (set! z (+ k z)))))) Reference Implementation The implementation below is written in R6RS hygienic macro and define-macro. The predicate procedure is implementation dependant. For instance, a procedure such as procedure-name or object-name, which returns the name of procedure or object, must be available to distinguish objects created by all the constructors from the others. ;;; define-lambda-object --- define-syntax (define-syntax unquote-get (syntax-rules () ((unquote-get symbol ((n0 d0) (n1 d1) ...)) (if (eq? symbol 'n0) d0 (unquote-get symbol ((n1 d1) ...)))) ((unquote-get symbol ()) (error 'define-lambda-object "absent field" symbol)))) (define-syntax unquote-get* (syntax-rules () ((unquote-get* symbol (n0 n1 ...)) (if (eq? symbol 'n0) n0 (unquote-get* symbol (n1 ...)))) ((unquote-get* symbol ()) (error 'define-lambda-object "not available inspection" symbol)))) (define-syntax unquote-set! (syntax-rules () ((unquote-set! symbol new-val (n0 n1 ...) fi) (if (eq? symbol 'n0) (set! n0 new-val) (unquote-set! symbol new-val (n1 ...) fi))) ((unquote-set! symbol new-val () fi) (if (memq symbol 'fi) (error 'define-lambda-object "read-only field" symbol) (error 'define-lambda-object "absent field" symbol))))) (define-syntax seq-lambda (syntax-rules () ((seq-lambda () (r ...) () body) (lambda (r ...) body)) ((seq-lambda () (r ...) (o oo ...) body) (lambda (r ... . z) (seq-lambda (z) () (o oo ...) body))) ((seq-lambda (z) () ((n d) . e) body) (let ((y (if (null? z) z (cdr z))) (n (if (null? z) d (car z)))) (seq-lambda (y) () e body))) ((seq-lambda (z) () () body) (if (null? z) body (error 'define-lambda-object "too many arguments" z))))) ;; Choose either procedure type or macro type according to your implementation. ;; 1. procedure opt-key (define (opt-key z k d) (let ((x (car z)) (y (cdr z))) (if (null? y) (cons d z) (if (eq? k x) y (let lp ((head (list x (car y))) (tail (cdr y))) (if (null? tail) (cons d z) (let ((x (car tail)) (y (cdr tail))) (if (null? y) (cons d z) (if (eq? k x) (cons (car y) (append head (cdr y))) (lp (cons x (cons (car y) head)) (cdr y))))))))))) ;; 2. macro opt-key! (define-syntax opt-key! (syntax-rules () ((opt-key! z n d) (let ((x (car z)) (y (cdr z))) (if (null? y) d (if (eq? 'n x) (begin (set! z (cdr y)) (car y)) (let lp ((head (list x (car y))) (tail (cdr y))) (if (null? tail) d (let ((x (car tail)) (y (cdr tail))) (if (null? y) d (if (eq? 'n x) (begin (set! z (append head (cdr y))) (car y)) (lp (cons x (cons (car y) head)) (cdr y))))))))))))) (define-syntax key-lambda (syntax-rules () ((key-lambda () (r ...) () body) (lambda (r ...) body)) ((key-lambda () (r ...) (o oo ...) body) (lambda (r ... . z) (key-lambda (z) () (o oo ...) body))) ((key-lambda (z) () ((n d) . e) body) ;; 1. procedure opt-key (let* ((y (if (null? z) (cons d z) (opt-key z 'n d))) (n (car y)) (y (cdr y))) (key-lambda (y) () e body))) ;; 2. macro opt-key! ;; (let ((n (if (null? z) d (opt-key! z n d)))) ;; (key-lambda (z) () e body))) ((key-lambda (z) () () body) (if (null? z) body (error 'define-lambda-object "too many arguments" z))))) (define (check-duplicate ls err-str) (cond ((null? ls) #f) ((memq (car ls) (cdr ls)) (error 'define-lambda-object err-str (car ls))) (else (check-duplicate (cdr ls) err-str)))) (define (check-field part-list main-list cmp name err-str) (let lp ((part part-list) (main main-list)) (if (null? part) main (if (null? main) (error 'define-lambda-object err-str name (car part)) (let ((field (car part))) (if (cmp field (car main)) (lp (cdr part) (cdr main)) (let loop ((head (list (car main))) (tail (cdr main))) (if (null? tail) (error 'define-lambda-object err-str name field) (if (cmp field (car tail)) (lp (cdr part) (append head (cdr tail))) (loop (cons (car tail) head) (cdr tail))))))))))) (define-syntax define-object (syntax-rules () ((define-object name make-object make-object-by-name pred-object (gr ...) (gi ...) (fm ...) ((fi id) ...) (r ...) (o ...) (a ...) ((c cd) ...) ((v vd) ...) ((h hd) ...)) (begin (define safe-parent (begin ;; check duplication (check-duplicate '(name gi ... gr ...) "duplicated group") (check-duplicate '(fm ... fi ... h ...) "duplicated field") ;; check field (check-field (gi 'read-write-field) '(fm ...) eq? 'gi "incompatible read-write field") ... (check-field (gi 'read-only-field) '(fi ...) eq? 'gi "incompatible read-only field") ... (check-field (gi 'required-field) '(r ...) eq? 'gi "incompatible required field") ... (check-field (gi 'optional-field) '(o ...) equal? 'gi "incompatible optional field") ... (check-field (gi 'automatic-field) '((c cd) ... (v vd) ... a ...) equal? 'gi "incompatible automatic field") ... (check-field (map car (gi 'common-field)) '(c ...) eq? 'gi "incompatible common field") ... (check-field (map car (gi 'virtual-field)) '(v ...) eq? 'gi "incompatible virtual field") ... (check-field (map car (gi 'hidden-field)) '(h ...) eq? 'gi "incompatible hidden field") ... (check-field (append (gr 'read-write-field) (gr 'read-only-field) (map car (gr 'hidden-field))) '(fm ... fi ... h ...) eq? 'gr "incompatible whole field") ... (list gi ... gr ...))) (define safe-name 'tmp) ;; Alist, vector/enum, vector/alist or hashtable can be used instead of ;; unquote-get & unquote-set! according to your implementation. ;; cf. (eval-variant expression implementation-specific-namespace) ;; An example of vector/enum: ;; (define enum-a (make-enumeration '(fm ... fi ...))) ;; (define enum-m (make-enumeration '(fm ...))) ;; (define enum-index-a (enum-set-indexer enum-a)) ;; (define enum-index-m (enum-set-indexer enum-m)) ;; (define makers ;; (let* ((c cd) ...) ;; (cons (seq-lambda () (r ...) (o ...) ;; (let* (a ... (array (vector (lambda (x) (if (eq? enum-index-a x) fm (set! fm x))) ... (lambda (x) id) ...))) ;; (define *%lambda-object%* ;; (lambda (arg . args) ;; (if (null? args) ;; (let ((n (enum-index-a arg))) ;; (if n ;; ((vector-ref array n) enum-index-a) ;; (error 'define-lambda-object "absent field" arg))) ;; (if (null? (cdr args)) ;; (let ((n (enum-index-m arg))) ;; (if n ;; ((vector-ref array n) (car args)) ;; (if (enum-set-member? arg enum-a) ;; (error 'define-lambda-object "read-only field" arg) ;; (error 'define-lambda-object "absent field" arg)))) ;; safe-name)))) ;; *%lambda-object%*)) ;; (key-lambda () (r ...) (o ...) ;; (let* (a ... (array (vector (lambda (x) (if (eq? enum-index-a x) fm (set! fm x))) ... (lambda (x) id) ...))) ;; (define *%lambda-object%* ;; (lambda (arg . args) ;; (if (null? args) ;; (let ((n (enum-index-a arg))) ;; (if n ;; ((vector-ref array n) enum-index-a) ;; (error 'define-lambda-object "absent field" arg))) ;; (if (null? (cdr args)) ;; (let ((n (enum-index-m arg))) ;; (if n ;; ((vector-ref array n) (car args)) ;; (if (enum-set-member? arg enum-a) ;; (error 'define-lambda-object "read-only field" arg) ;; (error 'define-lambda-object "absent field" arg)))) ;; safe-name)))) ;; *%lambda-object%*))))) (define makers (let* ((c cd) ...) (cons (seq-lambda () (r ...) (o ...) (let* (a ...) (define *%lambda-object%* (lambda (arg . args) (if (null? args) (unquote-get arg ((fm fm) ... (fi id) ...)) (if (null? (cdr args)) (unquote-set! arg (car args) (fm ...) (fi ...)) safe-name)))) *%lambda-object%*)) (key-lambda () (r ...) (o ...) (let* (a ...) (define *%lambda-object%* (lambda (arg . args) (if (null? args) (unquote-get arg ((fm fm) ... (fi id) ...)) (if (null? (cdr args)) (unquote-set! arg (car args) (fm ...) (fi ...)) safe-name)))) *%lambda-object%*))))) (define make-object (car makers)) (define make-object-by-name (cdr makers)) ;; The predicate procedure is implementation dependant. (define (pred-object object) (and (eq? '*%lambda-object%* (object-name object)) ;mzscheme (let ((group (object #f #f #f))) (or (eq? safe-name group) (let lp ((group-list (group 'parent))) (if (null? group-list) #f (or (eq? safe-name (car group-list)) (lp ((car group-list) 'parent)) (lp (cdr group-list))))))))) (define name (let ((parent safe-parent) (constructor makers) (predicate pred-object) (read-write-field '(fm ...)) (read-only-field '(fi ...)) (required-field '(r ...)) (optional-field '(o ...)) (automatic-field '((c cd) ... (v vd) ... a ...)) (common-field '((c cd) ...)) (virtual-field '((v vd) ...)) (hidden-field '((h hd) ...))) (lambda (symbol) (unquote-get* symbol (parent constructor predicate read-write-field read-only-field required-field optional-field automatic-field common-field virtual-field hidden-field))))) (define tmp (set! safe-name name)))))) (define-syntax define-make-object (lambda (x) (syntax-case x () ((_ nm gr gi fm fi r o a c v h) (let ((name (syntax->datum #'nm))) (let ((make-obj (string->symbol (string-append "make-" (symbol->string name)))) (make-obj-by-name (string->symbol (string-append "make-" (symbol->string name) "-by-name"))) (pred-obj (string->symbol (string-append (symbol->string name) "?")))) (with-syntax ((make-object (datum->syntax #'nm make-obj)) (make-object-by-name (datum->syntax #'nm make-obj-by-name)) (pred-object (datum->syntax #'nm pred-obj))) #'(define-object nm make-object make-object-by-name pred-object gr gi fm fi r o a c v h)))))))) (define-syntax field-sort (syntax-rules (quote unquote quasiquote) ((field-sort gr gi (fm ...) fi r o a (c ...) v h (((,,n) d) . e)) (field-sort gr gi (fm ... n) fi r o a (c ... (n d)) v h e)) ((field-sort gr gi fm (fi ...) r o a (c ...) v h ((,,n d) . e)) (field-sort gr gi fm (fi ... (n n)) r o a (c ... (n d)) v h e)) ((field-sort gr gi fm fi r o (a ...) c v (h ...) ((',n d) . e)) (field-sort gr gi fm fi r o (a ... (n d)) c v (h ... (n d)) e)) ((field-sort gr gi fm (fi ...) r o a c (v ...) h ((`,n d) . e)) (field-sort gr gi fm (fi ... (n d)) r o a c (v ... (n d)) h e)) ((field-sort gr gi (fm ...) fi r o (a ...) c v h (((,n) d) . e)) (field-sort gr gi (fm ... n) fi r o (a ... (n d)) c v h e)) ((field-sort gr gi fm (fi ...) r o (a ...) c v h ((,n d) . e)) (field-sort gr gi fm (fi ... (n n)) r o (a ... (n d)) c v h e)) ((field-sort gr gi fm fi r (o ...) () () () (h ...) (('n d) . e)) (field-sort gr gi fm fi r (o ... (n d)) () () () (h ... (n d)) e)) ((field-sort gr gi (fm ...) fi r (o ...) () () () h (((n) d) . e)) (field-sort gr gi (fm ... n) fi r (o ... (n d)) () () () h e)) ((field-sort gr gi fm (fi ...) r (o ...) () () () h ((n d) . e)) (field-sort gr gi fm (fi ... (n n)) r (o ... (n d)) () () () h e)) ((field-sort gr gi (fm ...) fi (r ...) () () () () () ((n) . e)) (field-sort gr gi (fm ... n) fi (r ... n) () () () () () e)) ((field-sort gr gi fm (fi ...) (r ...) () () () () () (n . e)) (field-sort gr gi fm (fi ... (n n)) (r ... n) () () () () () e)) ((field-sort gr (name gi ...) fm fi r o a c v h ()) (define-make-object name gr (gi ...) fm fi r o a c v h)))) (define-syntax group-sort (syntax-rules () ((group-sort (gr ...) (gi ...) ((g) gg ...) f) (group-sort (gr ... g) (gi ...) (gg ...) f)) ((group-sort (gr ...) (gi ...) (g gg ...) f) (group-sort (gr ...) (gi ... g) (gg ...) f)) ((group-sort () () g f) (group-sort () (g) () f)) ((group-sort gr gi () f) (field-sort gr gi () () () () () () () () f)))) (define-syntax define-lambda-object (syntax-rules () ((define-lambda-object g . f) (group-sort () () g f)))) ;;; define-lambda-object --- define-macro (define-macro (unquote-get symbol args) (if (null? args) `(error 'define-lambda-object "absent field" ,symbol) (let ((arg (car args))) `(if (eq? ,symbol ',(car arg)) ,(cdr arg) (unquote-get ,symbol ,(cdr args)))))) (define-macro (unquote-get* symbol args) (if (null? args) `(error 'define-lambda-object "not available inspection" ,symbol) (let ((arg (car args))) `(if (eq? ,symbol ',arg) ,arg (unquote-get* ,symbol ,(cdr args)))))) (define-macro (unquote-set! symbol new-val args iargs) (define (lp args) (if (null? args) `(if (memq ,symbol ',iargs) (error 'define-lambda-object "read-only field" ,symbol) (error 'define-lambda-object "absent field" ,symbol)) (let ((arg (car args))) `(if (eq? ,symbol ',arg) (set! ,arg ,new-val) ,(lp (cdr args)))))) (lp args)) (define-macro (seq-lambda r o body) (define (opt-seq z cls body) (if (null? cls) `(if (null? ,z) ,body (error 'define-lambda-object "too many arguments" ,z)) (let ((cl (car cls))) `(let ((,(car cl) (if (null? ,z) ,(cadr cl) (car ,z))) (,z (if (null? ,z) ,z (cdr ,z)))) ,(opt-seq z (cdr cls) body))))) (if (null? o) `(lambda ,r ,body) (let ((z (gensym))) `(lambda (,@r . ,z) ,(opt-seq z o body))))) ;; Choose either procedure type or macro type according to your implementation. ;; 1. procedure field-key (define (field-key z k d) (let ((x (car z)) (y (cdr z))) (if (null? y) (cons d z) (if (eq? k x) y (let lp ((head (list x (car y))) (tail (cdr y))) (if (null? tail) (cons d z) (let ((x (car tail)) (y (cdr tail))) (if (null? y) (cons d z) (if (eq? k x) (cons (car y) (append head (cdr y))) (lp (cons x (cons (car y) head)) (cdr y))))))))))) ;; 2. macro field-key! (define-macro (field-key! z n d) (let ((x (gensym)) (y (gensym)) (head (gensym)) (tail (gensym))) `(let ((,x (car ,z)) (,y (cdr ,z))) (if (null? ,y) ,d (if (eq? ',n ,x) (begin (set! ,z (cdr ,y)) (car ,y)) (let lp ((,head (list ,x (car ,y))) (,tail (cdr ,y))) (if (null? ,tail) ,d (let ((,x (car ,tail)) (,y (cdr ,tail))) (if (null? ,y) ,d (if (eq? ',n ,x) (begin (set! ,z (append ,head (cdr ,y))) (car ,y)) (lp (cons ,x (cons (car ,y) ,head)) (cdr ,y)))))))))))) (define-macro (key-lambda r o body) (define (opt-key z cls body) (if (null? cls) `(if (null? ,z) ,body (error 'define-lambda-object "too many arguments" ,z)) (let ((cl (car cls))) (let ((var (car cl)) (val (cadr cl))) ;; 1. procedure field-key `(let* ((,z (if (null? ,z) (cons ,val ,z) (field-key ,z ',var ,val))) (,var (car ,z)) (,z (cdr ,z))) ;; 2. macro field-key! ;; `(let* ((,var (if (null? ,z) ,val (field-key! ,z ,var ,val)))) ,(opt-key z (cdr cls) body)))))) (if (null? o) `(lambda ,r ,body) (let ((z (gensym))) `(lambda (,@r . ,z) ,(opt-key z o body))))) (define (check-duplicate ls err-str) (cond ((null? ls) #f) ((memq (car ls) (cdr ls)) (error 'define-lambda-object err-str (car ls))) (else (check-duplicate (cdr ls) err-str)))) (define (check-field part-list main-list cmp name err-str) (let lp ((part part-list) (main main-list)) (if (null? part) main (if (null? main) (error 'define-lambda-object err-str name (car part)) (let ((field (car part))) (if (cmp field (car main)) (lp (cdr part) (cdr main)) (let loop ((head (list (car main))) (tail (cdr main))) (if (null? tail) (error 'define-lambda-object err-str name field) (if (cmp field (car tail)) (lp (cdr part) (append head (cdr tail))) (loop (cons (car tail) head) (cdr tail))))))))))) ;; (define (number-alist ls) ;; (let loop ((ls ls) (n 0)) ;; (if (null? ls) ;; '() ;; (cons (cons (car ls) n) (loop (cdr ls) (+ 1 n)))))) (define-macro (define-object name gr gi fm fi r o a c v h) (let ((safe-name (gensym)) (safe-parent (gensym)) (arg (gensym)) (args (gensym)) (makers (gensym)) ;; (alist-a (gensym)) ;; (alist-m (gensym)) ;; (array (gensym)) ;; (safe-eq (gensym)) ;; (safe-arg (gensym)) (group-name (symbol->string name))) (let ((make-object (string->symbol (string-append "make-" group-name))) (make-object-by-name (string->symbol (string-append "make-" group-name "-by-name"))) (pred-object (string->symbol (string-append group-name "?")))) `(begin (define ,safe-parent (begin ;; check duplication (check-duplicate (append (list ',name) ',gi ',gr) "duplicated group") (check-duplicate ',(append fm (map car fi) (map car h)) "duplicated field") ;; check field (for-each (lambda (g y) (check-field (g 'read-write-field) ',fm eq? y "incompatible read-write field") (check-field (g 'read-only-field) ',(map car fi) eq? y "incompatible read-only field") (check-field (g 'required-field) ',r eq? y "incompatible required field") (check-field (g 'optional-field) ',o equal? y "incompatible optional field") (check-field (g 'automatic-field) ',(append c v a) equal? y "incompatible automatic field") (check-field (map car (g 'common-field)) ',(map car c) eq? y "incompatible common field") (check-field (map car (g 'virtual-field)) ',(map car v) eq? y "incompatible virtual field") (check-field (map car (g 'hidden-field)) ',(map car h) eq? y "incompatible hidden field")) (list ,@gi) ',gi) (for-each (lambda (g y) (check-field (append (g 'read-write-field) (g 'read-only-field) (map car (g 'hidden-field))) ',(append fm (map car fi) (map car h)) eq? y "incompatible whole field")) (list ,@gr) ',gr) (list ,@gi ,@gr))) ;; Alist, vector/enum, vector/alist or hashtable can be used instead of ;; unquote-get & unquote-set! according to your implementation. ;; cf. (eval-variant expression implementation-specific-namespace) ;; An example of vector/alist: ;; (define ,alist-a (number-alist ',(append fm (map car fi)))) ;; (define ,alist-m (number-alist ',fm)) ;; (define ,makers ;; (let* ,c ;; (cons (seq-lambda ,r ,o ;; (let* (,@a (,array (vector ,@(map (lambda (f) `(lambda (,safe-arg) (if (eq? ,safe-arg ',safe-eq) ,f (set! ,f ,safe-arg)))) fm) ,@(map (lambda (f) `(lambda (,safe-arg) ,f)) (map cdr fi))))) ;; (define *%lambda-object%* ;; (lambda (,arg . ,args) ;; (if (null? ,args) ;; (let ((pair (assq ,arg ,alist-a))) ;; (if pair ;; ((vector-ref ,array (cdr pair)) ',safe-eq) ;; (error 'define-lambda-object "absent field" ,arg))) ;; (if (null? (cdr ,args)) ;; (let ((pair (assq ,arg ,alist-m))) ;; (if pair ;; ((vector-ref ,array (cdr pair)) (car ,args)) ;; (if (assq ,arg ',fi) ;; (error 'define-lambda-object "read-only field" ,arg) ;; (error 'define-lambda-object "absent field" ,arg)))) ;; ,safe-name)))) ;; *%lambda-object%*)) ;; (key-lambda ,r ,o ;; (let* (,@a (,array (vector ,@(map (lambda (f) `(lambda (,safe-arg) (if (eq? ,safe-arg ',safe-eq) ,f (set! ,f ,safe-arg)))) fm) ,@(map (lambda (f) `(lambda (,safe-arg) ,f)) (map cdr fi))))) ;; (define *%lambda-object%* ;; (lambda (,arg . ,args) ;; (if (null? ,args) ;; (let ((pair (assq ,arg ,alist-a))) ;; (if pair ;; ((vector-ref ,array (cdr pair)) ',safe-eq) ;; (error 'define-lambda-object "absent field" ,arg))) ;; (if (null? (cdr ,args)) ;; (let ((pair (assq ,arg ,alist-m))) ;; (if pair ;; ((vector-ref ,array (cdr pair)) (car ,args)) ;; (if (assq ,arg ',fi) ;; (error 'define-lambda-object "read-only field" ,arg) ;; (error 'define-lambda-object "absent field" ,arg)))) ;; ,safe-name)))) ;; *%lambda-object%*))))) (define ,makers (let* ,c (cons (seq-lambda ,r ,o (let* ,a (define *%lambda-object%* (lambda (,arg . ,args) (if (null? ,args) (unquote-get ,arg ,(append (map cons fm fm) fi)) (if (null? (cdr ,args)) (unquote-set! ,arg (car ,args) ,fm ,(map car fi)) ,safe-name)))) *%lambda-object%*)) (key-lambda ,r ,o (let* ,a (define *%lambda-object%* (lambda (,arg . ,args) (if (null? ,args) (unquote-get ,arg ,(append (map cons fm fm) fi)) (if (null? (cdr ,args)) (unquote-set! ,arg (car ,args) ,fm ,(map car fi)) ,safe-name)))) *%lambda-object%*))))) (define ,make-object (car ,makers)) (define ,make-object-by-name (cdr ,makers)) ;; The predicate procedure is implementation dependant. (define (,pred-object object) (and (eq? '*%lambda-object%* (object-name object)) ;mzscheme (let ((group (object #f #f #f))) (or (eq? ,safe-name group) (let lp ((group-list (group 'parent))) (if (null? group-list) #f (or (eq? ,safe-name (car group-list)) (lp ((car group-list) 'parent)) (lp (cdr group-list))))))))) (define ,name (let ((parent ,safe-parent) (constructor ,makers) (predicate ,pred-object) (read-write-field ',fm) (read-only-field ',(map car fi)) (required-field ',r) (optional-field ',o) (automatic-field ',(append c v a)) (common-field ',c) (virtual-field ',v) (hidden-field ',h)) (lambda (symbol) (unquote-get* symbol (parent constructor predicate read-write-field read-only-field required-field optional-field automatic-field common-field virtual-field hidden-field))))) (define ,safe-name ,name))))) (define-macro (define-lambda-object group . field) (define (field-sort gr gi field fm fi r o a c v h) (if (null? field) `(define-object ,(car gi) ,gr ,(cdr gi) ,fm ,fi ,r ,o ,a ,c ,v ,h) (let ((vars (car field))) (if (symbol? vars) ;r (if (and (null? o) (null? a) (null? c) (null? v)) (field-sort gr gi (cdr field) fm (append fi (list (cons vars vars))) (append r (list vars)) o a c v h) (error 'define-lambda-object "required-field should precede optional-field and automatic-field" vars)) (let ((var (car vars))) (if (symbol? var) (if (null? (cdr vars)) ;(r) (if (and (null? o) (null? a) (null? c) (null? v)) (field-sort gr gi (cdr field) (append fm vars) fi (append r vars) o a c v h) (error 'define-lambda-object "required-field should precede optional-field and automatic-field" var)) (if (null? (cddr vars)) ;(o val) (if (and (null? a) (null? c) (null? v)) (field-sort gr gi (cdr field) fm (append fi (list (cons var var))) r (append o (list vars)) a c v h) (error 'define-lambda-object "optional-field should precede automatic-field" var)) (error 'define-lambda-object "incorrect syntax" vars))) (if (and (pair? (cdr vars)) (null? (cddr vars))) (let ((b (car var))) (if (symbol? b) (if (null? (cdr var)) ;((o) val) (if (and (null? a) (null? c) (null? v)) (field-sort gr gi (cdr field) (append fm var) fi r (append o (list (cons b (cdr vars)))) a c v h) (error 'define-lambda-object "optional-field should precede automatic-field" b)) (if (null? (cddr var)) (let ((d (cadr var))) (if (symbol? d) (if (eq? 'unquote b) ;(,a val) (field-sort gr gi (cdr field) fm (append fi (list (cons d d))) r o (append a (list (cons d (cdr vars)))) c v h) (if (eq? 'quote b) ;('o val) (if (and (null? a) (null? c) (null? v)) (field-sort gr gi (cdr field) fm fi r (append o (list (cons d (cdr vars)))) a c v (append h (list (cons d (cdr vars))))) (error 'define-lambda-object "optional-field should precede automatic-field" b)) (error 'define-lambda-object "incorrect syntax" vars))) (if (and (eq? 'unquote (car d)) (symbol? (cadr d)) (null? (cddr d))) (if (eq? 'unquote b) ;(,,a val) (field-sort gr gi (cdr field) fm (append fi (list (cons (cadr d) (cadr d)))) r o a (append c (list (cons (cadr d) (cdr vars)))) v h) (if (eq? 'quote b) ;(',a val) (field-sort gr gi (cdr field) fm fi r o (append a (list (cons (cadr d) (cdr vars)))) c v (append h (list (cons (cadr d) (cdr vars))))) (if (eq? 'quasiquote b) ;(`,a val) (field-sort gr gi (cdr field) fm (append fi (list (cons (cadr d) (cadr vars)))) r o a c (append v (list (cons (cadr d) (cdr vars)))) h) (error 'define-lambda-object "incorrect syntax" vars)))) (error 'define-lambda-object "incorrect syntax" vars)))) (error 'define-lambda-object "incorrect syntax" vars))) (if (and (null? (cdr var)) (eq? 'unquote (car b)) (null? (cddr b))) (if (symbol? (cadr b)) ;((,a) val) (field-sort gr gi (cdr field) (append fm (cdr b)) fi r o (append a (list (cons (cadr b) (cdr vars)))) c v h) (let ((e (cadr b))) (if (and (eq? 'unquote (car e)) (symbol? (cadr e)) (null? (cddr e))) ;((,,a) val) (field-sort gr gi (cdr field) (append fm (cdr e)) fi r o a (append c (list (cons (cadr e) (cdr vars)))) v h) (error 'define-lambda-object "incorrect syntax" vars)))) (error 'define-lambda-object "incorrect syntax" vars)))) (error 'define-lambda-object "incorrect syntax" vars)))))))) (define (group-sort gr gi gg field) (if (pair? gg) (let ((g (car gg))) (if (pair? g) (group-sort (append gr g) gi (cdr gg) field) (group-sort gr (append gi (list g)) (cdr gg) field))) (if (symbol? gg) (group-sort gr (cons gg gi) '() field) (field-sort gr gi field '() '() '() '() '() '() '() '())))) (group-sort '() '() group field)) ;;; eof References [R6RS] Michael Sperber, R. Kent Dybvig, Matthew Flatt, and Anton von Straaten: Revised(6) Report on the Algorithmic Language Scheme http://www.r6rs.org [SRFI 9] Richard Kelsey: Defining Record Type http://srfi.schemers.org/srfi-9 [On Lisp] Paul Graham: http://www.paulgraham.com/onlisp.html Copyright Copyright (c) 2009 Joo ChurlSoo. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.