SPDX-FileCopyrightText: 2009 Joo ChurlSoo SPDX-License-Identifier: MIT Title define-lambda-object Author Joo ChurlSoo Abstract This SRFI introduces a macro, DEFINE-LAMBDA-OBJECT which defines a set of procedures, that is, a group, two constructors, and a predicate. The constructors also make a group of procedures, namely lambda objects. The macro extends DEFINE-RECORD-TYPE (SRFI 9) in being more general but much less general than DEFCLASS (CLOS). The macro has no explicit field accessors and mutators but child groups, mutable fields, immutable fields, required fields, optional fields, and automatic fields. Rationale Unlike most record-defining macros, an object created by a constructor procedure is not a vector but a procedure whose first argument is a symbolized field name. Though the average time required to access a randomly chosen field is more for the procedure-type object than for the vector-type one, the lambda object plays the role of the accessor and mutator of each field. This makes the troublesome explicit or implicit accessors and mutators unnecessary. In addition, this makes the accesors and mutators to be automatically `nongenerative' and reduces the role of the predicate procedure. Although DEFINE-RECORD-TYPE of R6RS can also have implicit accessors and mutators, they should know their own record name. Further more, when there are parents, they should know both their own record name and their parents' record names, whch could make users confused, though there is an advantage that a record can have another field with the same name. This macro works not only as DEFINE-RECORD-TYPE with required fields but also as DEFSTRUCT of Common Lisp with optional fields. Automatic fields can be used like METHODs of C++ as well as like checkers or modifiers of the values of required and optional fields. These make the macro to be able to work as a simple but rudimentary CLASS. Specification (define-lambda-object ) --> | ( *) --> ;unamendable group | () ;amendable group --> * * * --> ;immutable field | () ;mutable field --> ( ) ;immutable field | (() ) ;mutable field --> (, ) ;immutable field | ((,) ) ;mutable field The name of is generated by prefixing `make-' to the group name, or by prefixing `make-' and postfixing `-by-name' to the group name. The name of is generated by adding a question mark (`?') to the end of the group name. The and must be identifiers. Each is a that is evaluated in an environment that the values of all the previous s are visible. Each time define-lambda-object expression is evaluated, a new group is created with distinct , , and procedures. is bound to a procedure of one argument. Like a gene, it has information on its s, s, , and the number and properties of s. And they are checked out whenever define-lambda-object expression is evaluated. In case of inheritance, all the s of s must exist in the of the child group, irrespectively of the order. Otherwise an error is signaled. In addition, the properties (mutability, sort of field, and default expression) of s of unamendable groups must be preserved in contrast with those of amendable groups. Otherwise an error is signaled. is bound to a procedure that takes at least as many arguments as the number of s. Whenever it is called, it returns an object of the , namely a procedure, which has information on its own group and all that goes with it. Its first argument must be a symbol of the same name as . Otherwise an error is signaled. The object becomes an accessor procedure of each in case of one argument and a mutator procedure of each in case of two arguments where the second argument is a new field value. The names of s are used to access the s as symbols of the same names. So they must be distinct. Otherwise an error is signaled. The mutable fields can be modified, whereas any attempt to modify the values of the immutable fields signals an error. The is initialized to the first one of the remaining arguments. If there are no more remaining arguments, an error is signaled. The initialization of the s is done by two types of s: 1. constructor The initialization method of s is the same as that of s except that the field is bound to the instead of signaling an error if there are no more remaining arguments. 2. constructor The name used at a call site for the corresponding is a symbol of the same name as the . The remaining arguments are sequentially interpreted as a series of pairs, where the first member of each pair is a field name and the second is the corresponding value. If there is no element for a particular field name, the field is initialized to the . The is bound to the corresponding . is a predicate procedure that returns #t for objects constructed by or s for child groups and #f for everything else. Examples ;; The `x' is a mutable required field. ;; The `y' is an immutable required field. (define-lambda-object ppoint (x) y) (define pp (make-ppoint 10 20)) (pp 'x) => 10 (pp 'y) => 20 (pp 'x 11) (pp 'x) => 11 (pp 'y 22) => error: immutable field y (ppoint? pp) => #t ;; The parent group `ppoint' is an unamendable group. (define-lambda-object (cpoint ppoint) x y color) => error: incompatible mutable field ppoint x ;; The `color' and `coordinate' are immutable automatic fields. (define-lambda-object (cpoint ppoint) (x) y (,color 'blue) (,coordinate (lambda (i j) (set! x (+ i x)) (set! y (+ j y))))) (define cp (make-cpoint 3 33 'red)) => error: expects 2 arguments, given 3 (define cp (make-cpoint 3 33)) (cp 'color) => blue (map cp '(x y)) => (3 33) ((cp 'coordinate) 30 300) (map cp '(x y)) => (33 333) (cpoint? cp) => #t (ppoint? cp) => #t (cpoint? pp) => #f ;; The `z' is an immutable optional field. ;; The `adbmal' is an immutable automatic field. (define-lambda-object (spoint ppoint) (x) y (z 100) (,adbmal (lambda (f) (f x y z)))) (define zp (make-spoint 5 55)) ((zp 'adbmal) list) => (5 55 100) (define zp (make-spoint 5 55 555)) ((zp 'adbmal) vector) => #(5 55 555) ((zp 'adbmal) +) => 615 (spoint? zp) => #t (ppoint? zp) => #t (cpoint? zp) => #f ;; The parent group `ppoint' is a amendable group. ;; All the fields are immutable and optional. (define-lambda-object (spoint (ppoint)) (x 0) (y x) (z x)) (define sp (make-spoint)) (map sp '(x y z)) => (0 0 0) (define sp (make-spoint 5 55)) (map sp '(x y z)) => (5 55 5) (define sp (make-spoint-by-name 'z 100)) (map sp '(x y z)) => (0 0 100) (spoint? sp) => #t (spoint? zp) => #f ;; The `coordinate' is the same automatic field as that of `cpoint' group, ;; but it has a different default which simulates polymorphism and overloading. (define-lambda-object (epoint (spoint) (cpoint)) (x 7) (y 70) (z 700) ((color) "brown") ((planet) "earth") (,coordinate (case-lambda ((i j) (cond ((and (string? i) (string? j)) (set! color i) (set! planet j)) ((and (number? i) (number? j)) (set! x (+ i x)) (set! y (+ j y))) (else (error 'epoint "coordinate: wrong data type" i j)))) ((i j k) (set! x (+ i x)) (set! y (+ j y)) (set! z (+ k z))))) (,adbmal (lambda (f) (f x y z color planet)))) (define ep (make-epoint 7 70 700 "blue")) (map ep '(x y z color planet)) => (7 70 700 "blue" "earth") (define ep (make-epoint-by-name 'color "blue")) ((ep 'adbmal) vector) => #(7 70 700 "blue" "earth") (map (lambda (o) (o 'x)) (list pp cp zp sp ep)) => (11 33 5 0 7) (map (lambda (p) (p ep)) (list ppoint? cpoint? spoint? epoint?))=> (#t #t #t #t) ((ep 'coordinate) "red" "mars") ((ep 'adbmal) list) => (7 70 700 "red" "mars") ((ep 'coordinate) 1 10) ((ep 'adbmal) list) => (8 80 700 "red" "mars") ((ep 'coordinate) 2 20 300) (map ep '(x y z)) => (10 100 1000) (map cp '(x y)) => (33 333) ((cp 'coordinate) 20 200) (map cp '(x y)) => (53 533) ((cp 'coordinate) 10 100 1000) => error: expects 2 arguments, given 3 epoint => # (epoint 'parent) => (# #) (epoint 'constructor) => (# #) (epoint 'predicate) => # (epoint 'mutable-field) => (color planet) (epoint 'immutable-field) => (x y z coordinate adbmal) (epoint 'required-field) => () (epoint 'optional-field) => ((x 7) (y 70) (z 700) (color "brown") (planet "earth")) (epoint 'automatic-field) => ((coordinate (case-lambda ((i j) (cond ((and (string? i) (string? j)) (set! color i) (set! planet j)) ((and (number? i) (number? j)) (set! x (+ i x)) (set! y (+ j y))) (else (error 'epoint "coordinate: wrong data type" i j)))) ((i j k) (set! x (+ i x)) (set! y (+ j y)) (set! z (+ k z))))) (adbmal (lambda (f) (f x y z color planet)))) Reference Implementation The implementation below is written in R6RS hygienic macro and define-macro. The predicate procedure is implementation dependant. For instance, a procedure such as procedure-name or object-name, which returns the name of procedure or object, must be available to distinguish objects created by all the constructors from the others. ;;; define-lambda-object --- define-syntax (define-syntax unquote-get (syntax-rules () ((unquote-get symbol (n0 n1 ...)) (if (eq? symbol 'n0) n0 (unquote-get symbol (n1 ...)))) ((unquote-get symbol ()) (error 'define-lambda-object "absent field" symbol)))) (define-syntax unquote-set! (syntax-rules () ((unquote-set! symbol new-val (n0 n1 ...) fi) (if (eq? symbol 'n0) (set! n0 new-val) (unquote-set! symbol new-val (n1 ...) fi))) ((unquote-set! symbol new-val () fi) (if (memq symbol 'fi) (error 'define-lambda-object "immutable field" symbol) (error 'define-lambda-object "absent field" symbol))))) (define-syntax seq-lambda (syntax-rules () ((seq-lambda () (r ...) () body) (lambda (r ...) body)) ((seq-lambda () (r ...) (o oo ...) body) (lambda (r ... . z) (seq-lambda (z) () (o oo ...) body))) ((seq-lambda (z) () ((n d) . e) body) (let ((y (if (null? z) z (cdr z))) (n (if (null? z) d (car z)))) (seq-lambda (y) () e body))) ((seq-lambda (z) () () body) (if (null? z) body (error 'define-lambda-object "too many arguments" z))))) (define (opt-key z k d) (let ((x (car z)) (y (cdr z))) (if (null? y) (cons d z) (if (eq? k x) y (let lp ((head (list x (car y))) (tail (cdr y))) (if (null? tail) (cons d z) (let ((x (car tail)) (y (cdr tail))) (if (null? y) (cons d z) (if (eq? k x) (cons (car y) (append head (cdr y))) (lp (cons x (cons (car y) head)) (cdr y))))))))))) (define-syntax key-lambda (syntax-rules () ((key-lambda () (r ...) () body) (lambda (r ...) body)) ((key-lambda () (r ...) (o oo ...) body) (lambda (r ... . z) (key-lambda (z) () (o oo ...) body))) ((key-lambda (z) () ((n d) . e) body) (let* ((y (if (null? z) (cons d z) (opt-key z 'n d))) (n (car y)) (y (cdr y))) (key-lambda (y) () e body))) ((key-lambda (z) () () body) (if (null? z) body (error 'define-lambda-object "too many arguments" z))))) (define (check-duplicate ls err-str) (cond ((null? ls) #f) ((memq (car ls) (cdr ls)) (error 'define-lambda-object err-str (car ls))) (else (check-duplicate (cdr ls) err-str)))) (define (check-field part-list main-list cmp name err-str) (let lp ((part part-list) (main main-list)) (if (null? part) main (if (null? main) (error 'define-lambda-object err-str name (car part)) (let ((field (car part))) (if (cmp field (car main)) (lp (cdr part) (cdr main)) (let loop ((head (list (car main))) (tail (cdr main))) (if (null? tail) (error 'define-lambda-object err-str name field) (if (cmp field (car tail)) (lp (cdr part) (append head (cdr tail))) (loop (cons (car tail) head) (cdr tail))))))))))) (define-syntax define-object (syntax-rules () ((define-object name make-object make-object-by-name pred-object (gr ...) (gi ...) (fm ...) (fi ...) (r ...) (o ...) (a ...)) (begin (define safe-name 'tmp) (define safe-parent (begin ;; check duplication (check-duplicate '(name gi ... gr ...) "duplicated group") (check-duplicate '(fm ... fi ...) "duplicated field") ;; check field (check-field (gi 'mutable-field) '(fm ...) eq? 'gi "incompatible mutable field") ... (check-field (gi 'immutable-field) '(fi ...) eq? 'gi "incompatible immutable field") ... (check-field (gi 'required-field) '(r ...) eq? 'gi "incompatible required field") ... (check-field (gi 'optional-field) '(o ...) equal? 'gi "incompatible optional field") ... (check-field (gi 'automatic-field) '(a ...) equal? 'gi "incompatible automatic field") ... (check-field (append (gr 'mutable-field) (gr 'immutable-field)) '(fm ... fi ...) eq? 'gr "incompatible whole field") ... (list gi ... gr ...))) (define make-object (seq-lambda () (r ...) (o ...) (let* (a ...) ;; Hashtable, enum plus vector, association list, or ;; vector can be used according to your implementation. ;; In this case, automatic fields become pure extra ;; fields. ;; Accessor takes precedence over mutator & predicate. (define *%lambda-object%* (lambda (arg . args) (if (null? args) (unquote-get arg (fm ... fi ...)) (if (null? (cdr args)) (unquote-set! arg (car args) (fm ...) (fi ...)) safe-name)))) ;; (define *%lambda-object%* ;; (lambda (arg . args) ;; (if (null? args) ;; (if (eq? arg #f) ;; safe-name ;; (unquote-get arg (fm ... fi ...))) ;; (unquote-set! arg (car args) (fm ...) (fi ...))))) *%lambda-object%*))) (define make-object-by-name (key-lambda () (r ...) (o ...) (let* (a ...) (define *%lambda-object%* (lambda (arg . args) (if (null? args) (unquote-get arg (fm ... fi ...)) (if (null? (cdr args)) (unquote-set! arg (car args) (fm ...) (fi ...)) safe-name)))) *%lambda-object%*))) ;; The predicate procedure is implementation dependant. (define (pred-object object) (and (eq? '*%lambda-object%* (object-name object)) ;mzscheme (let ((group (object #f #f #f))) ;cf. (object #f) (or (eq? safe-name group) (let lp ((group-list (group 'parent))) (if (null? group-list) #f (or (eq? safe-name (car group-list)) (lp ((car group-list) 'parent)) (lp (cdr group-list))))))))) (define name (let ((parent safe-parent) (constructor (list make-object make-object-by-name)) (predicate pred-object) (whole-field '(fm ... fi ...)) (mutable-field '(fm ...)) (immutable-field '(fi ...)) (required-field '(r ...)) (optional-field '(o ...)) (automatic-field '(a ...))) (lambda (symbol) (unquote-get symbol (parent constructor predicate mutable-field immutable-field required-field optional-field automatic-field))))) (define tmp (set! safe-name name)))))) (define-syntax define-make-object (lambda (x) (syntax-case x () ((_ nm gr gi fm fi r o a) (let ((name (syntax->datum #'nm))) (let ((make-obj (string->symbol (string-append "make-" (symbol->string name)))) (make-obj-by-name (string->symbol (string-append "make-" (symbol->string name) "-by-name"))) (pred-obj (string->symbol (string-append (symbol->string name) "?")))) (with-syntax ((make-object (datum->syntax #'nm make-obj)) (make-object-by-name (datum->syntax #'nm make-obj-by-name)) (pred-object (datum->syntax #'nm pred-obj))) #'(define-object nm make-object make-object-by-name pred-object gr gi fm fi r o a)))))))) (define-syntax field-sort (syntax-rules (unquote) ((field-sort gr gi (fm ...) fi r o (a ...) (((,n) d) . e)) (field-sort gr gi (fm ... n) fi r o (a ... (n d)) e)) ((field-sort gr gi fm (fi ...) r o (a ...) ((,n d) . e)) (field-sort gr gi fm (fi ... n) r o (a ... (n d)) e)) ((field-sort gr gi (fm ...) fi r (o ...) () (((n) d) . e)) (field-sort gr gi (fm ... n) fi r (o ... (n d)) () e)) ((field-sort gr gi fm (fi ...) r (o ...) () ((n d) . e)) (field-sort gr gi fm (fi ... n) r (o ... (n d)) () e)) ((field-sort gr gi (fm ...) fi (r ...) () () ((n) . e)) (field-sort gr gi (fm ... n) fi (r ... n) () () e)) ((field-sort gr gi fm (fi ...) (r ...) () () (n . e)) (field-sort gr gi fm (fi ... n) (r ... n) () () e)) ((field-sort gr (name gi ...) fm fi r o a ()) (define-make-object name gr (gi ...) fm fi r o a)))) (define-syntax group-sort (syntax-rules () ((group-sort (gr ...) (gi ...) ((g) gg ...) f) (group-sort (gr ... g) (gi ...) (gg ...) f)) ((group-sort (gr ...) (gi ...) (g gg ...) f) (group-sort (gr ...) (gi ... g) (gg ...) f)) ((group-sort () () g f) (group-sort () (g) () f)) ((group-sort gr gi () f) (field-sort gr gi () () () () () f)))) (define-syntax define-lambda-object (syntax-rules () ((define-lambda-object g . f) (group-sort () () g f)))) ;;; define-lambda-object --- define-macro (define-macro (unquote-get symbol args) (if (null? args) `(error 'define-lambda-object "absent field" ,symbol) (let ((arg (car args))) `(if (eq? ,symbol ',arg) ,arg (unquote-get ,symbol ,(cdr args)))))) (define-macro (unquote-set! symbol new-val args iargs) (define (lp args) (if (null? args) `(if (memq ,symbol ',iargs) (error 'define-lambda-object "immutable field" ,symbol) (error 'define-lambda-object "absent field" ,symbol)) (let ((arg (car args))) `(if (eq? ,symbol ',arg) (set! ,arg ,new-val) ,(lp (cdr args)))))) (lp args)) (define-macro (seq-lambda r o body) (define (opt-seq z cls body) (if (null? cls) `(if (null? ,z) ,body (error 'define-lambda-object "too many arguments" ,z)) (let ((cl (car cls))) `(let ((,(car cl) (if (null? ,z) ,(cadr cl) (car ,z))) (,z (if (null? ,z) ,z (cdr ,z)))) ,(opt-seq z (cdr cls) body))))) (if (null? o) `(lambda ,r ,body) (let ((z (gensym))) `(lambda (,@r . ,z) ,(opt-seq z o body))))) (define (field-key z k d) (let ((x (car z)) (y (cdr z))) (if (null? y) (cons d z) (if (eq? k x) y (let lp ((head (list x (car y))) (tail (cdr y))) (if (null? tail) (cons d z) (let ((x (car tail)) (y (cdr tail))) (if (null? y) (cons d z) (if (eq? k x) (cons (car y) (append head (cdr y))) (lp (cons x (cons (car y) head)) (cdr y))))))))))) (define-macro (key-lambda r o body) (define (opt-key z cls body) (if (null? cls) `(if (null? ,z) ,body (error 'define-lambda-object "too many arguments" ,z)) (let ((cl (car cls))) (let ((var (car cl)) (val (cadr cl))) `(let* ((,z (if (null? ,z) (cons ,val ,z) (field-key ,z ',var ,val))) (,var (car ,z)) (,z (cdr ,z))) ,(opt-key z (cdr cls) body)))))) (if (null? o) `(lambda ,r ,body) (let ((z (gensym))) `(lambda (,@r . ,z) ,(opt-key z o body))))) (define (check-duplicate ls err-str) (cond ((null? ls) #f) ((memq (car ls) (cdr ls)) (error 'define-lambda-object err-str (car ls))) (else (check-duplicate (cdr ls) err-str)))) (define (check-field part-list main-list cmp name err-str) (let lp ((part part-list) (main main-list)) (if (null? part) main (if (null? main) (error 'define-lambda-object err-str name (car part)) (let ((field (car part))) (if (cmp field (car main)) (lp (cdr part) (cdr main)) (let loop ((head (list (car main))) (tail (cdr main))) (if (null? tail) (error 'define-lambda-object err-str name field) (if (cmp field (car tail)) (lp (cdr part) (append head (cdr tail))) (loop (cons (car tail) head) (cdr tail))))))))))) (define-macro (define-object name gr gi fm fi r o a) (let ((safe-name (gensym)) (safe-parent (gensym)) (arg (gensym)) (args (gensym)) (group-name (symbol->string name))) (let ((make-object (string->symbol (string-append "make-" group-name))) (make-object-by-name (string->symbol (string-append "make-" group-name "-by-name"))) (pred-object (string->symbol (string-append group-name "?")))) `(begin (define ,safe-parent (begin ;; check duplication (check-duplicate (append (list ',name) ',gi ',gr) "duplicated group") (check-duplicate (append ',fm ',fi) "duplicated field") ;; check field (for-each (lambda (g v) (check-field (g 'mutable-field) ',fm eq? v "incompatible mutable field") (check-field (g 'immutable-field) ',fi eq? v "incompatible immutable field") (check-field (g 'required-field) ',r eq? v "incompatible required field") (check-field (g 'optional-field) ',o equal? v "incompatible optional field") (check-field (g 'automatic-field) ',a equal? v "incompatible automatic field")) (list ,@gi) ',gi) (for-each (lambda (g v) (check-field (append (g 'mutable-field) (g 'immutable-field)) (append ',fm ',fi) eq? v "incompatible whole field")) (list ,@gr) ',gr) (list ,@gi ,@gr))) (define ,make-object (seq-lambda ,r ,o (let* ,a ;; Hashtable, enum plus vector, association list, or ;; vector can be used according to your implementation. ;; In this case, automatic fields become pure extra ;; fields. ;; Accessor takes precedence over mutator & predicate. (define *%lambda-object%* (lambda (,arg . ,args) (if (null? ,args) (unquote-get ,arg ,(append fm fi)) (if (null? (cdr ,args)) (unquote-set! ,arg (car ,args) ,fm ,fi) ,safe-name)))) ;; (define *%lambda-object%* ;; (lambda (,arg . ,args) ;; (if (null? ,args) ;; (if (eq? ,arg #f) ;; ,safe-name ;; (unquote-get ,arg ,(append fm fi))) ;; (unquote-set! ,arg (car ,args) ,fm ,fi)))) *%lambda-object%*))) (define ,make-object-by-name (key-lambda ,r ,o (let* ,a (define *%lambda-object%* (lambda (,arg . ,args) (if (null? ,args) (unquote-get ,arg ,(append fm fi)) (if (null? (cdr ,args)) (unquote-set! ,arg (car ,args) ,fm ,fi) ,safe-name)))) *%lambda-object%*))) ;; The predicate procedure is implementation dependant. (define (,pred-object object) (and (eq? '*%lambda-object%* (object-name object)) ;mzscheme (let ((group (object #f #f #f))) ;cf. (object #f) (or (eq? ,safe-name group) (let lp ((group-list (group 'parent))) (if (null? group-list) #f (or (eq? ,safe-name (car group-list)) (lp ((car group-list) 'parent)) (lp (cdr group-list))))))))) (define ,name (let ((parent ,safe-parent) (constructor (list ,make-object ,make-object-by-name)) (predicate ,pred-object) (mutable-field ',fm) (immutable-field ',fi) (required-field ',r) (optional-field ',o) (automatic-field ',a)) (lambda (symbol) (unquote-get symbol (parent constructor predicate mutable-field immutable-field required-field optional-field automatic-field))))) (define ,safe-name ,name))))) (define-macro (define-lambda-object group . field) (define (field-sort gr gi field fm fi r o a) (if (null? field) `(define-object ,(car gi) ,gr ,(cdr gi) ,fm ,fi ,r ,o ,a) (let ((vars (car field))) (if (symbol? vars) ;r (if (and (null? o) (null? a)) (field-sort gr gi (cdr field) fm (append fi (list vars)) (append r (list vars)) o a) (error 'define-lambda-object "required-field should precede optional-field and automatic-field" vars)) (let ((var (car vars))) (if (symbol? var) (if (null? (cdr vars)) ;(r) (if (and (null? o) (null? a)) (field-sort gr gi (cdr field) (append fm vars) fi (append r vars) o a) (error 'define-lambda-object "required-field should precede optional-field and automatic-field" var)) (if (null? (cddr vars)) ;(o val) (if (null? a) (field-sort gr gi (cdr field) fm (append fi (list var)) r (append o (list vars)) a) (error 'define-lambda-object "optional-field should precede automatic-field" var)) (error 'define-lambda-object "incorrect syntax" vars))) (let ((v (car var))) (if (or (null? (cdr vars)) (pair? (cddr vars))) (error 'define-lambda-object "incorrect syntax" vars) (if (symbol? v) (if (null? (cdr var)) ;((o) val) (if (null? a) (field-sort gr gi (cdr field) (append fm var) fi r (append o (list (cons v (cdr vars)))) a) (error 'define-lambda-object "optional-field should precede automatic-field" v)) (if (and (eq? 'unquote v) (null? (cddr var))) ;(,a val) (field-sort gr gi (cdr field) fm (append fi (list (cadr var))) r o (append a (list (cons (cadr var) (cdr vars))))) (error 'define-lambda-object "incorrect syntax" vars))) (if (and (null? (cdr var)) (eq? 'unquote (car v)) (null? (cddr v))) ;((,a) val) (field-sort gr gi (cdr field) (append fm (list (cadr v))) fi r o (append a (list (cons (cadr v) (cdr vars))))) (error 'define-lambda-object "incorrect syntax" vars))))))))))) (define (group-sort gr gi gg field) (if (pair? gg) (let ((g (car gg))) (if (pair? g) (group-sort (append gr g) gi (cdr gg) field) (group-sort gr (append gi (list g)) (cdr gg) field))) (if (symbol? gg) (group-sort gr (cons gg gi) '() field) (field-sort gr gi field '() '() '() '() '())))) (group-sort '() '() group field)) ;;; eof References [R6RS] Michael Sperber, R. Kent Dybvig, Matthew Flatt, and Anton von Straaten: Revised(6) Report on the Algorithmic Language Scheme http://www.r6rs.org [SRFI 9] Richard Kelsey: Defining Record Type http://srfi.schemers.org/srfi-9 [On Lisp] Paul Graham: http://www.paulgraham.com/onlisp.html Copyright Copyright (c) 2009 Joo ChurlSoo. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.